Michael A. Goodrich

Learn More
Human–Robot Interaction (HRI) has recently received considerable attention in the academic community, in labs, in technology companies, and through the media. Because of this attention, it is desirable to present a survey of HRI to serve as a tutorial to people outside the field and to promote discussion of a unified vision of HRI within the field. The goal(More)
The ability of robots to autonomously perform tasks is increasing. More autonomy in robots means that the human managing the robot may have available free time. It is desirable to use this free time productively, and a current trend is use this available free time to manage multiple robots. We present the notion of neglect tolerance as a means for(More)
This paper describes an effort to identify common metrics for task-oriented human-robot interaction (HRI). We begin by discussing the need for a toolkit of HRI metrics. We then describe the framework of our work and identify important biasing factors that must be taken into consideration. Finally, we present suggested common metrics for standardization and(More)
Navigation is an essential element of many remote robot operations including search and rescue, reconnaissance, and space exploration. Previous reports on using remote mobile robots suggest that navigation is difficult due to poor situation awareness. It has been recommended by experts in human-robot interaction that interfaces between humans and robots(More)
This paper presents an end-to-end solution to the cooperative control problem represented by the scenario where unmanned air vehicles (UAVs) are assigned to transition through known target locations in the presence of dynamic threats. The problem is decomposed into the subproblems of: 1) cooperative target assignment; 2) coordinated UAV intercept; 3) path(More)
The objective of this paper is to describe the design and implementation of a small semiautonomous fixed-wing unmanned air vehicle. In particular we describe the hardware and software architectures used in the design. We also describe a low weight, low cost autopilot developed at Brigham Young University and the algorithms associated with the autopilot.(More)
Engineers, business managers, and governments are increasingly aware of the importance and difficulty of integrating technology and humans. The presence of technology can enhance human comfort, efficiency, and safety, but the absence of human-factors analysis can lead to uncomfortable, inefficient, and unsafe systems. Systematic humancentered design(More)
One of the fundamental aspects of robot teleoperation is the ability to successfully navigate a robot through an environment. We define successful navigation to mean that the robot minimizes collisions and arrives at the destination in a timely manner. Often video and map information is presented to a robot operator to aid in navigation tasks. This paper(More)