Michael A. Fearing

Learn More
Diffusion tensor imaging (DTI) is a recent imaging technique that assesses the microstructure of the cerebral white matter (WM) based on anisotropic diffusion (i.e., water molecules move faster in parallel to nerve fibers than perpendicular to them). Fractional anisotropy (FA), which ranges from 0 to 1.0, increases with myelination of WM tracts and is(More)
This investigation had two main objectives: 1) to assess the comparability of volumes determined by operator-controlled image quantification with automated image analysis in evaluating atrophic brain changes related to traumatic brain injury (TBI) in children, and 2) to assess the extent of diffuse structural changes throughout the brain as determined by(More)
Generalized whole brain volume loss is well documented in moderate to severe traumatic brain injury. Whether this atrophy occurs in the thalamus and brainstem has not been systematically studied in children. Magnetic resonance imaging (MRI) quantitative analysis was used to investigate brain volume loss in the thalamus and brainstem in 16 traumatic brain(More)
In vivo MRI volumetric analysis enables investigators to evaluate the extent of tissue loss following traumatic brain injury (TBI). However, volumetric studies of pediatric TBI are sparse, and there have been no volumetric studies to date in children examining specific subregions of the prefrontal and temporal lobes. In this study, MRI volumetry was used to(More)
While closed head injury frequently results in damage to the frontal and temporal lobes, damage to deep cortical structures, such as the hippocampus, amygdala, and basal ganglia, has also been reported. Five deep central structures (hippocampus, amygdala, globus pallidus, putamen, and caudate) were examined in 16 children (eight males, eight females; aged(More)
  • 1