Michael A. Farries

Learn More
Song learning in oscine birds relies on a circuit known as the "anterior forebrain pathway," which includes a specialized region of the avian basal ganglia. This region, area X, is embedded within a telencephalic structure considered homologous to the striatum, the input structure of the mammalian basal ganglia. Area X has many features in common with the(More)
The song system of oscine birds has frequently been presented as a model system for motor learning in vertebrates. This practice has been bolstered by the growing recognition that one part of the song system that is essential for song learning, area X, is a component of the avian striatum. The mammalian striatum, the input structure of the basal ganglia,(More)
Spike timing-dependent synaptic plasticity (STDP) has emerged as the preferred framework linking patterns of pre- and postsynaptic activity to changes in synaptic strength. Although synaptic plasticity is widely believed to be a major component of learning, it is unclear how STDP itself could serve as a mechanism for general purpose learning. On the other(More)
The forebrains of mammals and birds appear quite different in their gross morphology, making it difficult to identify homologies between them and to assess how far they have diverged in organization. Nevertheless one set of forebrain structures, the basal ganglia, has been successfully compared in mammals and birds. Anatomical, histochemical, and molecular(More)
Area X is a songbird basal ganglia nucleus that is required for vocal learning. Both Area X and its immediate surround, the medial striatum (MSt), contain cells displaying either striatal or pallidal characteristics. We used pathway-tracing techniques to compare directly the targets of Area X and MSt with those of the lateral striatum (LSt) and globus(More)
Although the basal ganglia of birds and mammals share an enormous number of anatomical, histochemical, and electrophysiological characteristics, studies in songbirds have revealed some important differences. Specifically, a specialized region of songbird striatum (the input structure of the basal ganglia) has an anatomical projection and a physiologically(More)
The subthalamic nucleus (STN) provides a second entry point for cortical input to the basal ganglia, supplementing the corticostriatal pathway. We examined the way intrinsic properties shape the response of the STN to cortical excitation, recording from rat STN in vivo and in brain slices. STN cells exhibited a near-zero slope conductance-and hence an(More)
Infinitesimal phase response curves (iPRCs) provide a simple description of the response of repetitively firing neurons and may be used to predict responses to any pattern of synaptic input. Their simplicity makes them useful for understanding the dynamics of neurons when certain conditions are met. For example, the sizes of evoked phase shifts should scale(More)
Vocal behavior in songbirds exemplifies a rich integration of motor, cognitive, and social functions that are shared among vertebrates. As a part of the underlying neural substrate, the song system, the anterior forebrain pathway (AFP) is required for song learning and maintenance. The AFP resembles the mammalian basal ganglia-thalamocortical loop in its(More)
The oscine song system has emerged as one of the leading model systems for studying motor learning in vertebrates, combining an easily recorded behavior with a discrete neural substrate. That neural substrate seems to be distinct from other structures in the avian brain and thus is often studied in isolation. However, the song system is unlikely to have(More)