Learn More
The song system of oscine birds has frequently been presented as a model system for motor learning in vertebrates. This practice has been bolstered by the growing recognition that one part of the song system that is essential for song learning, area X, is a component of the avian striatum. The mammalian striatum, the input structure of the basal ganglia,(More)
Spike timing-dependent synaptic plasticity (STDP) has emerged as the preferred framework linking patterns of pre- and postsynaptic activity to changes in synaptic strength. Although synaptic plasticity is widely believed to be a major component of learning, it is unclear how STDP itself could serve as a mechanism for general purpose learning. On the other(More)
Vocal behavior in songbirds exemplifies a rich integration of motor, cognitive, and social functions that are shared among vertebrates. As a part of the underlying neural substrate, the song system, the anterior forebrain pathway (AFP) is required for song learning and maintenance. The AFP resembles the mammalian basal ganglia-thalamocortical loop in its(More)
The discrete, interconnected nuclei of the songbird brain, collectively termed the song system, underlie the learning and production of song. Two main forebrain pathways have been identified that contribute to song production, learning, and adult plasticity. A posterior "motor pathway" including nucleus HVc (used as the proper name), the robust nucleus of(More)
The basal ganglia-recipient thalamus receives inhibitory inputs from the pallidum and excitatory inputs from cortex, but it is unclear how these inputs interact during behavior. We recorded simultaneously from thalamic neurons and their putative synaptically connected pallidal inputs in singing zebra finches. We find, first, that each pallidal spike(More)
Area X is a songbird basal ganglia nucleus that is required for vocal learning. Both Area X and its immediate surround, the medial striatum (MSt), contain cells displaying either striatal or pallidal characteristics. We used pathway-tracing techniques to compare directly the targets of Area X and MSt with those of the lateral striatum (LSt) and globus(More)
Song learning in oscine birds relies on a circuit known as the "anterior forebrain pathway," which includes a specialized region of the avian basal ganglia. This region, area X, is embedded within a telencephalic structure considered homologous to the striatum, the input structure of the mammalian basal ganglia. Area X has many features in common with the(More)
The song system of oscine birds has become a versatile model system that is used to study diverse problems in neurobiology. Because the song system is often studied with the intention of applying the results to mammalian systems, it is important to place song system brain nuclei in a broader context and to understand the relationships between these avian(More)
The subthalamic nucleus (STN) provides a second entry point for cortical input to the basal ganglia, supplementing the corticostriatal pathway. We examined the way intrinsic properties shape the response of the STN to cortical excitation, recording from rat STN in vivo and in brain slices. STN cells exhibited a near-zero slope conductance-and hence an(More)
Experimental evidence indicates that the response of subthalamic neurons to excitatory postsynaptic potentials (EPSPs) is well described by their infinitesimal phase response curves (iPRC). However, the factors controlling the shape of that iPRC, and hence controlling the way subthalamic neurons respond to synaptic input, are unclear. We developed a(More)