Learn More
A DNA binding and dimerization motif, with apparent amphipathic helices (the HLH motif), has recently been identified in various proteins, including two that bind to immunoglobulin enhancers (E12 and E47). We show here that various HLH proteins can bind as apparent heterodimers to a single DNA motif and also, albeit usually more weakly, as apparent(More)
Sensory organ formation in Drosophila is activated by proneural genes that encode basic-helix-loop-helix (bHLH) transcription factors. These genes are antagonized by hairy and other proline-bHLH proteins. hairy has not been shown to bind to DNA and has been proposed to form inactive heterodimers with proneural activator proteins. Here, we show that hairy(More)
We have analyzed the morphology of over 5000 Ti1 pioneer growth cones labeled with anti-HRP, which reveals the disposition of axons, growth cone branches, and filopodia. Ti1 axon pathways typically consist of a sequence of 7 characteristically oriented segments, with a single, distinct reorientation point between each segment. Growth cones exhibit the same(More)
Hairy-related proteins include the Drosophila Hairy and Enhancer of Split proteins and mammalian Hes proteins. These proteins are basic helix-loop-helix (bHLH) transcriptional repressors that control cell fate decisions such as neurogenesis or myogenesis in both Drosophila melanogaster and mammals. Hairy-related proteins are site-specific DNA-binding(More)
The daughterless (da) gene is known to have separate maternal and zygotic functions: Maternally supplied daughterless activity is required for proper sex determination and dosage compensation in female embryos, whereas loss of zygotically supplied da+ activity causes embryonic lethality in both male and female embryos. We have found that the zygotic da+(More)
We have compared the morphologies of approximately 5000 antibody-labeled afferent pioneer growth cones fixed at various stages of growth along their characteristic path over the epithelium in the legs of grasshopper embryos, and have used growth cone morphology as an indicator of differences in the affinity of the epithelial substrate for pioneer growth(More)
BACKGROUND Cell-specific gene regulation is often controlled by specific combinations of DNA binding sites in target enhancers or promoters. A key question is whether these sites are randomly arranged or if there is an organizational pattern or "architecture" within such regulatory modules. During Notch signaling in Drosophila proneural clusters,(More)
The induction of neurite outgrowth by NGF is a transcription-dependent process in PC12 cells, but the transcription factors that mediate this process are not known. Here we show that the bHLH transcriptional repressor HES-1 is a mediator of this process. Inactivation of endogenous HES-1 by forced expression of a dominant-negative protein induces neurite(More)
HES-1 is a Hairy-related basic helix-loop-helix protein with three evolutionarily conserved regions known to define its function as a transcription repressor. The basic region, helix-loop-helix domain, and WRPW motif have been characterized for their molecular function in DNA binding, dimer formation, and corepressor recruitment, respectively. In contrast,(More)