Michael A. Caudy

Learn More
A DNA binding and dimerization motif, with apparent amphipathic helices (the HLH motif), has recently been identified in various proteins, including two that bind to immunoglobulin enhancers (E12 and E47). We show here that various HLH proteins can bind as apparent heterodimers to a single DNA motif and also, albeit usually more weakly, as apparent(More)
Hairy-related proteins are a distinct subfamily of basic helix-loop-helix (bHLH) proteins that generally function as DNA-binding transcriptional repressors. These proteins act in opposition to bHLH transcriptional activator proteins such as the proneural and myogenic proteins; together, the activator and repressor genes that encode these proteins have(More)
Hairy-related proteins include the Drosophila Hairy and Enhancer of Split proteins and mammalian Hes proteins. These proteins are basic helix-loop-helix (bHLH) transcriptional repressors that control cell fate decisions such as neurogenesis or myogenesis in both Drosophila melanogaster and mammals. Hairy-related proteins are site-specific DNA-binding(More)
Sensory organ formation in Drosophila is activated by proneural genes that encode basic-helix-loop-helix (bHLH) transcription factors. These genes are antagonized by hairy and other proline-bHLH proteins. hairy has not been shown to bind to DNA and has been proposed to form inactive heterodimers with proneural activator proteins. Here, we show that hairy(More)
Runt domain proteins are transcriptional regulators that specify cell fates for processes extending from pattern formation in insects to leukemogenesis in humans. Runt domain family members are defined based on the presence of the 128-amino-acid Runt domain, which is necessary and sufficient for sequence-specific DNA binding. We demonstrate an(More)
The first nerve cells to appear in the limb buds of embryonic grasshoppers are a pair which lie at the distal tip and project axons along the length of the limb to the central nervous system (CNS). The stereotyped route navigated by these 'pioneer' axons is followed by other neurones and eventually becomes that of a major adult nerve trunk. The guidance(More)
BACKGROUND Cell-specific gene regulation is often controlled by specific combinations of DNA binding sites in target enhancers or promoters. A key question is whether these sites are randomly arranged or if there is an organizational pattern or "architecture" within such regulatory modules. During Notch signaling in Drosophila proneural clusters,(More)
We have analyzed the morphology of over 5000 Ti1 pioneer growth cones labeled with anti-HRP, which reveals the disposition of axons, growth cone branches, and filopodia. Ti1 axon pathways typically consist of a sequence of 7 characteristically oriented segments, with a single, distinct reorientation point between each segment. Growth cones exhibit the same(More)
Extensive analysis during the last 10–15 years has identified many of the mechanisms and factors involved in the activation of eukaryotic gene transcription. Although activation is better studied and more appreciated, a growing body of work has shown that in many circumstances transcriptional repression is as important as activation in the regulation of(More)
We have compared the morphologies of approximately 5000 antibody-labeled afferent pioneer growth cones fixed at various stages of growth along their characteristic path over the epithelium in the legs of grasshopper embryos, and have used growth cone morphology as an indicator of differences in the affinity of the epithelial substrate for pioneer growth(More)