Michael A Carpenter

Learn More
Several mutations are required for cancer development, and genome sequencing has revealed that many cancers, including breast cancer, have somatic mutation spectra dominated by C-to-T transitions. Most of these mutations occur at hydrolytically disfavoured non-methylated cytosines throughout the genome, and are sometimes clustered. Here we show that the DNA(More)
Ovarian cancer is a clinically and molecularly heterogeneous disease. The driving forces behind this variability are unknown. Here, we report wide variation in the expression of the DNA cytosine deaminase APOBEC3B, with elevated expression in the majority of ovarian cancer cell lines (three SDs above the mean of normal ovarian surface epithelial cells) and(More)
Human APOBEC3G (A3G) and activation-induced deaminase (AID) belong to a family of DNA-cytosine deaminases. While A3G targets the last C in a run of C's, AID targets C in the consensus sequence WRC (W is A or T and R is a purine). Guided by the structures of the A3G carboxyl-terminal catalytic domain (A3G-CTD), we identified two potential regions (region 1(More)
APOBEC3G belongs to a family of DNA cytosine deaminases that are involved in the restriction of a broad number of retroviruses including human immunodeficiency virus type 1 (HIV-1). Prior studies have identified two distinct mechanistic steps in Vif-deficient HIV-1 restriction: packaging into virions and deaminating viral cDNA. APOBEC3A, for example,(More)
Human APOBEC3F is an antiretroviral single-strand DNA cytosine deaminase, susceptible to degradation by the HIV-1 protein Vif. In this study the crystal structure of the HIV Vif binding, catalytically active, C-terminal domain of APOBEC3F (A3F-CTD) was determined. The A3F-CTD shares structural motifs with portions of APOBEC3G-CTD, APOBEC3C, and APOBEC2.(More)
APOBEC3A and APOBEC3G are DNA cytosine deaminases with biological functions in foreign DNA and retrovirus restriction, respectively. APOBEC3A has an intrinsic preference for cytosine preceded by thymine (5'-TC) in single-stranded DNA substrates, whereas APOBEC3G prefers the target cytosine to be preceded by another cytosine (5'-CC). To determine the amino(More)
When a spatially uniform temperature change is imposed on a solid with more than one phase, or on a polycrystal of a single, non-cubic phase (showing anisotropic expansion-contraction), the resulting thermal strain is inhomogeneous (non-affine). Thermal cycling induces internal stresses, leading to structural and property changes that are usually(More)
A Au-CeO(2) nanocomposite film has been investigated as a potential sensing element for high-temperature plasmonic sensing of H(2), CO, and NO(2) in an oxygen containing environment. The CeO(2) thin film was deposited by molecular beam epitaxy (MBE), and Au was implanted into the as-grown film at an elevated temperature followed by high temperature(More)
A marked change in anelastic properties, namely, elastic softening accompanied by increased damping, has been observed in a single crystal of SrTiO(3) below ~50 K by resonant ultrasound spectroscopy. This correlates with other subtle changes in structure and properties which have been explained in the past in terms of a novel quantum state and the formation(More)
This report details correlated electrical, mechanical and magnetic behaviour in BiFeO(3) ceramics doped with 10% Ln (Ln = Sm, Nd) ions on the Bi, or perovskite A, site and synthesized by a sol-gel method. The ceramics exhibit bulk piezoelectric and ferroelectric properties and clear ferroelectric domain patterns through piezoresponse force microscopy.(More)