Learn More
Using recombinant variants of BPTI, we have determined the rate constants corresponding to formation of each of the fifteen possible disulfide bonds in BPTI, starting from the reduced, unfolded protein. The 14-38 disulfide forms faster than any of the other 14 possible disulfides. This faster rate results from significantly higher intrinsic chemical(More)
Binding of a long series of mono- and dinucleotide analogues of the 7-methylguanosine containing 5'-mRNA-cap to human protein translation initiation factor eIF4E has been investigated by means of fluorescence. A new methodological approach in gathering and analysis of the fluorescence data provided us with very accurate values of the association equilibrium(More)
Interactions of amyloid beta (Abeta) peptides with Cu(II) are believed to play a crucial role in the molecular mechanisms of neurotoxicity of Alzheimer's disease. There is, however, a serious disagreement regarding the strength of Cu(II) binding to these peptides. We used recombinant amyloid beta peptide 1-40 (Abeta40) to determine the stoichiometry and(More)
Native bovine pancreatic trypsin inhibitor (BPTI) contains three disulfide bonds: Cys5-Cys55, Cys14-Cys38 and Cys30-Cys51. Correct cysteine pairing, native structure, and full anti-proteinase activity can be restored in the process of oxidative refolding of reduced BPTI. Oxidative refolding starts with the formation of single disulfide intermediates. All 15(More)
Mounting evidence points to the soluble oligomers of amyloid β (Aβ) peptide as important neurotoxic species in Alzheimer's disease, causing synaptic dysfunction and neuronal injury, and finally leading to neuronal death. The mechanism of the Aβ peptide self-assembly is still under debate. Here, Aβ1-40 peptide oligomers were studied using mass spectrometry(More)
Different families of protein inhibitors of serine proteases share similar conformation of the enzyme-binding loop, while their scaffoldings are completely different. In the enzyme-inhibitor complex, the P1position of the loop makes numerous contacts within the S1pocket and significantly influences the energy of the interaction. Here, we determine the(More)
The heterogeneous nuclear ribonucleoprotein K is an ancient RNA/DNA-binding protein that is involved in multiple processes that compose gene expression. The pleiotropic action of K protein reflects its ability to interact with different classes of factors, interactions that are regulated by extracellular signals. We used affinity purification and MS to(More)
Neuronal ceroid lipofuscinoses (NCL) are the most common inherited progressive encephalopathies of childhood. One of the most prevalent forms of NCL, Juvenile neuronal ceroid lipofuscinosis (JNCL) or CLN3 disease (OMIM: 204200), is caused by mutations in the CLN3 gene on chromosome 16p12.1. Despite progress in the NCL field, the primary function of(More)
Changes in the nuclear structure and function during the cell cycle are thought to be correlated with lamins phosphorylation. Here, we report the identification of new in vivo phosphorylation sites on Drosophila melanogater lamin Dm using immunoisolation and mass spectrometry with collision-induced peptide fragmentation (Electrospray-Linear Trap Quadrupole-(More)
NtOSAK (Nicotiana tabacum osmotic stress-activated protein kinase), a member of the SnRK2 subfamily, is activated rapidly in response to hyperosmotic stress. Our previous results as well as data presented by others indicate that phosphorylation is involved in activation of SnRK2 kinases. Here, we have mapped the regulatory phosphorylation sites of NtOSAK by(More)