Michaël Katinka

Learn More
Bathycoccus prasinos is an extremely small cosmopolitan marine green alga whose cells are covered with intricate spider's web patterned scales that develop within the Golgi cisternae before their transport to the cell surface. The objective of this work is to sequence and analyze its genome, and to present a comparative analysis with other known genomes of(More)
Diatoms represent the predominant group of eukaryotic phytoplankton in the oceans and are responsible for around 20% of global photosynthesis. Two whole genome sequences are now available. Notwithstanding, our knowledge of diatom biology remains limited because only around half of their genes can be ascribed a function based onhomology-based methods. High(More)
The complete DNA sequence of the G surface protein of Paramecium primaurelia has been determined. It contains an open reading frame of 8145 nucleotides devoid of introns and coding for a protein of 329,000 Mr. Analysis of the deduced amino acid sequence reveals remarkable features such as important internal homologies and a periodic structure, which could(More)
In vitro recombination techniques were used to clone the Escherichia coli thrA and thrB structural genes in the plasmid vector pBR322. The chimeric plasmid was analyzed and characterized genetically, by restriction mapping and DNA sequencing. The limited expression of the threonine biosynthetic enzymes in the strain carrying the recombinant plasmid is(More)
The Paramecium primaurelia cell surface is covered with a high molecular weight protein called the surface antigen. Several genes encode alternative surface antigens, but only one is expressed at a time. In addition, each of these genes shows a high degree of allelic polymorphism. Paramecium primaurelia strains 156 and 168 have different alleles of the G(More)
  • 1