Learn More
Receptors for excitatory amino-acid transmitters on nerve cells fall into two main categories associated with non-selective cationic channels, the NMDA (N-methyl-D-aspartate) and non-NMDA (kainate and quisqualate) receptors. Special properties of NMDA receptors such as their voltage-dependent blockade by Mg2+ (refs 3, 4) and their permeability to Na+, K+ as(More)
We report the long-term modulation of K+ channels by cAMP in cultured murine colliculi neurons. A short (1-2 s) application of 8-Br-cAMP induced a long-lasting broadening of the action potential, a loss of after-hyperpolarization, and a reduction in spike accommodation. In agreement with these changes, 8-Br-cAMP produced a long-lasting (2 hr) inhibition of(More)
Dopamine (DA) regulation of intracellular cyclic AMP formation in purified, intact striatal neurons in primary culture was examined. DA (EC50, 3 microM) and vasoactive intestinal polypeptide (VIP; EC50, 10 nM) stimulated cyclic AMP formation by 2- and 5-fold, respectively. In the presence of 0.1 microM forskolin (which was virtually ineffective alone),(More)
Exposure of mouse colliculi neurons to selective 5-hydroxytryptamine (5-HT)4 agonists was accompanied by a rapid desensitization of the receptor-stimulated adenylyl cyclase response. Half-maximal desensitization occurred after 2 min. Only exposure of neurons to selective 5-HT4 agonists led to a potent desensitization of the 5-HT4-mediated response. Neurons(More)
The ultrastructural localization of Go, a GTP-binding protein (G protein) highly expressed in nervous tissues, was performed in cultured fetal and adult murine neurons, using affinity-purified polyclonal antibodies against the alpha subunit of the Go protein (Go alpha). These antibodies recognized denatured Go alpha and both the native Go alpha-subunit and(More)
We have investigated the regional distribution of 5-hydroxytryptamine4 (5-HT4) receptor binding sites in the adult guinea pig, rat and mouse brain using the specific 5-HT4 antagonist [3H]GR113808 as a radioligand. The developmental changes in the expression of these binding sites were also investigated quantitatively in the rat brain (gestational days 16(More)
1. The aim of the present study was to examine the effect of 5-hydroxytryptamine (5-HT) on K+ current in primary culture of mouse colliculi neurones and to identify the 5-HT receptor subtype that could be involved in this effect. 2. The voltage-activated K+ current of the neurones was partially blocked by 8-bromo adenosine 3':5'-cyclic monophosphate(More)
Glutamate and dopamine are important neurotransmitters in the basal ganglia. Dopamine can act via D1 receptors to activate adenylyl cyclase in striatal neurons, while glutamate stimulation of NMDA receptors leads to an increase in intracellular calcium. Increases in intracellular calcium or cAMP can induce immediate early gene expression in striatal(More)
The regional distribution of 5-hydroxytryptamine (5-HT4) receptors labelled with [3H]GR113808 was examined in rat basal ganglia and hippocampus after specific lesions. Lesion of serotonin neurons induced by injections of 5,7-dihydroxytryptamine into the dorsal and medial raphe nuclei resulted in increased 5-HT4 receptor binding in most regions examined,(More)
Striatal neurons were cultured from the fetal mouse brain and maintained in serum-free medium for 14-21 days in vitro (DIV). Pretreatment of the culture dishes successively with a polycation followed by fetal calf serum resulted in rapid neuron attachment and neurite proliferation. After 9-10 DIV, electron microscope observations revealed the presence of(More)