Michèle Sebben

Learn More
Receptors for excitatory amino-acid transmitters on nerve cells fall into two main categories associated with non-selective cationic channels, the NMDA (N-methyl-D-aspartate) and non-NMDA (kainate and quisqualate) receptors. Special properties of NMDA receptors such as their voltage-dependent blockade by Mg2+ (refs 3, 4) and their permeability to Na+, K+ as(More)
We report the long-term modulation of K+ channels by cAMP in cultured murine colliculi neurons. A short (1-2 s) application of 8-Br-cAMP induced a long-lasting broadening of the action potential, a loss of after-hyperpolarization, and a reduction in spike accommodation. In agreement with these changes, 8-Br-cAMP produced a long-lasting (2 hr) inhibition of(More)
A nonclassical 5-hydroxytryptamine (5-HT) receptor mediates the stimulation of adenylate cyclase activity in mouse embryo colliculi neurons in primary culture. The pharmacological profile characterized with agonists and antagonists suggests that this 5-HT receptor does not appear to correspond to a known 5-HT receptor. On this 5-HT receptor, 5-HT (EC50 =(More)
We have investigated the regional distribution of 5-hydroxytryptamine4 (5-HT4) receptor binding sites in the adult guinea pig, rat and mouse brain using the specific 5-HT4 antagonist [3H]GR113808 as a radioligand. The developmental changes in the expression of these binding sites were also investigated quantitatively in the rat brain (gestational days 16(More)
The 5-hydroxytryptamine type 4 receptor (5-HT4R) is involved in learning, feeding, respiratory control and gastrointestinal transit. This receptor is one of the G-protein-coupled receptors for which alternative mRNA splicing generates the most variants that differ in their C-terminal extremities. Some 5-HT4R variants (a, e and f) express canonical PDZ(More)
We have previously shown that a non-classical 5-hydroxytryptamine (5-HT4) receptor mediates the stimulation of adenylate cyclase activity in mouse embryo colliculi neurons in primary culture. The pharmacological characteristics of this receptor exclude the possibility that it belongs to the known 5-HT1, 5-HT2 or 5-HT3 receptor types. Here we report that(More)
Two putative anxiolytic drugs [ipsapirone (TVXQ 7821) and buspirone], structurally unrelated to benzodiazepines, have negligible ataxic and sedative side effects. These drugs are piperazine analogs which interact at 5-HT1 binding sites. It is demonstrated here that these drugs and two other piperazine derivatives, trifluoromethylphenylpiperazine (TFMPP) and(More)
Three chemical classes of serotonin 5-HT4 receptor agonists have been identified so far: 5-substituted indoles (e.g. 5-HT), benzamides (e.g. renzapride) and benzimidazolones (e.g. BIMU 8). In a search for 5-HT4 receptor antagonists, we have discovered that the benzimidazolone derivative DAU 6285 (for structure see text), is 3–5 times more potent than(More)
Striatal neurons were cultured from the fetal mouse brain and maintained in serum-free medium for 14-21 days in vitro (DIV). Pretreatment of the culture dishes successively with a polycation followed by fetal calf serum resulted in rapid neuron attachment and neurite proliferation. After 9-10 DIV, electron microscope observations revealed the presence of(More)
Adult guinea pig hippocampal membranes contain two 5-hydroxytryptamine (5-HT) receptors positively coupled with an adenylate cyclase. One is a typical 5-HT1A receptor and the second is a nonclassical 5-HT receptor that we previously proposed to call 5-HT4. Here, we show that 4-amino-5-chlor-2-methoxy-benzamide derivatives are agonists of 5-HT4 receptors in(More)