#### Filter Results:

#### Publication Year

1980

2015

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

#### Brain Region

#### Cell Type

#### Method

#### Organism

Learn More

Human mathematical competence emerges from two representational systems. Competence in some domains of mathematics, such as calculus, relies on symbolic representations that are unique to humans who have undergone explicit teaching. More basic numerical intuitions are supported by an evolutionarily ancient approximate number system that is shared by adults,… (More)

Many children have significant mathematical learning disabilities (MLD, or dyscalculia) despite adequate schooling. The current study hypothesizes that MLD partly results from a deficiency in the Approximate Number System (ANS) that supports nonverbal numerical representations across species and throughout development. In this study of 71 ninth graders, it… (More)

This paper is a descriptive report of findings from a prospective longitudinal study of math disability (MD). The study was designed to address the incidence of MD during primary school, the utility of different MD definitions, and evidence of MD subtypes. The results illustrate the dynamic properties of psychometrically derived definitions of MD. Different… (More)

Researchers of mathematics learning disability (MLD) commonly use cutoff scores to determine which participants have MLD. Some researchers apply more restrictive cutoffs than others (e.g., performance below the 10th vs. below the 35th percentile). Different cutoffs may lead to groups of children that differ in their profile of math and related skills,… (More)

The Approximate Number System (ANS) is a primitive mental system of nonverbal representations that supports an intuitive sense of number in human adults, children, infants, and other animal species. The numerical approximations produced by the ANS are characteristically imprecise and, in humans, this precision gradually improves from infancy to adulthood.… (More)

Mathematical skills are of critical importance, both academically and in everyday life. Neuroimaging research has primarily focused on the relationship between mathematical skills and functional brain activity. Comparatively few studies have examined which white matter regions support mathematical abilities. The current study uses diffusion tensor imaging… (More)

We examined whether posterior vermis size is smaller in individuals with fragile X syndrome (fra X) than in control subjects and whether this decreased size is associated with cognitive performance. Cognitive and behavioral dysfunctions have been identified in fra X; however, underlying neuropathogenic mechanisms remain unclear. MRI was used to investigate… (More)

Reports of autistic behaviors were examined for 30 school-age girls with fragile X (fraX) and 31 age- and IQ-matched controls through a structured interview administered to each girl's parent(s). IQ scores were obtained for each participant; anxiety, neuroanatomical, and molecular-genetic data were derived for girls with fraX. Girls with fraX had… (More)

- Michèle M M Mazzocco, Richard E Thompson
- Learning disabilities research & practice : a…
- 2005

The aim of the present study was to address how to effectively predict mathematics learning disability (MLD). Specifically, we addressed whether cognitive data obtained during kindergarten can effectively predict which children will have MLD in third grade, whether an abbreviated test battery could be as effective as a standard psychoeducational assessment… (More)

Do individual differences in the brain mechanisms for arithmetic underlie variability in high school mathematical competence? Using functional magnetic resonance imaging, we correlated brain responses to single digit calculation with standard scores on the Preliminary Scholastic Aptitude Test (PSAT) math subtest in high school seniors. PSAT math scores,… (More)