Learn More
We investigated heterocellular communication in rat mesenteric arterial strips at the cellular level using confocal microscopy. To visualize Ca(2+) changes in different cell populations, smooth muscle cells (SMCs) were loaded with Fluo-4 and endothelial cells (ECs) with Fura red. SMC contraction was stimulated using high K(+) solution and Phenylephrine.(More)
Smooth muscle and endothelial cells in the arterial wall are exposed to mechanical stress. Indeed blood flow induces intraluminal pressure variations and shear stress. An increase in pressure may induce a vessel contraction, a phenomenon known as the myogenic response. Many muscular vessels present vasomotion, i.e., rhythmic diameter oscillations caused by(More)
In vitro, different techniques are used to study the smooth muscle cells' calcium dynamics and contraction/relaxation mechanisms on arteries. Most experimental studies use either an isometric or an isobaric setup. However, in vivo, a blood vessel is neither isobaric nor isometric nor isotonic, as it is continuously submitted to intraluminal pressure(More)
Many experimental studies have shown that arterial smooth muscle cells respond with cytosolic calcium rises to vasoconstrictor stimulation. A low vasoconstrictor concentration gives rise to asynchronous spikes in the calcium concentration in a few cells (asynchronous flashing). With a greater vasoconstrictor concentration, the number of smooth muscle cells(More)
Asynchronous and synchronous calcium oscillations occur in a variety of cells. A well-established pathway for intercellular communication is provided by gap junctions which connect adjacent cells and can mediate electrical and chemical coupling. Several experimental studies report that cells presenting only a transient increase when freshly dispersed may(More)
It is well-known that cyclic variations of the vascular diameter, a phenomenon called vasomotion, are induced by synchronous calcium oscillations of smooth muscle cells (SMCs). However, the role of the endothelium on vasomotion is unclear. Some experimental studies claim that the endothelium is necessary for synchronization and vasomotion, whereas others(More)
In rat mesenteric arteries, smooth muscle cells exhibit intercellular calcium waves in response to local phenylephrine stimulation. These waves have a velocity of approximately 20 cells/s and a range of approximately 80 cells. We analyze these waves in a theoretical model of a population of coupled smooth muscle cells, based on the hypothesis that the wave(More)
Vasomotion consists of cyclic arterial diameter variations induced by synchronous contractions and relaxations of smooth muscle cells. However, the arteries do not contract simultaneously on macroscopic distances, and a propagation of the contraction can be observed. In the present study, our aim was to investigate this propagation. We stimulated(More)
BACKGROUND AND AIMS Vasomotion consists in cyclic oscillations of the arterial diameter induced by the synchronized activity of the smooth muscle cells. So far, contradictory results have emerged in the literature about the role of the endothelium in the onset and maintenance of vasomotion. Here our aim is to understand how the endothelium may either(More)
THE ARTERIAL SYSTEM secures an adequate supply of blood to organs. In many vessels, cyclic variations of the arterial diameter, a phenomenon called vasomotion, may contribute to the regulation of blood flow. Vasomotion is generated by synchronous oscillations in the cytosolic calcium concentration of adjacent smooth muscle cells (SMCs). Gap junctions(More)
  • 1