Learn More
Pili have been identified on the cell surface of Streptococcus pneumoniae, a major cause of morbidity and mortality worldwide. In contrast to Gram-negative bacteria, little is known about the structure of native pili in Gram-positive species and their role in pathogenicity. Triple immunoelectron microscopy of the elongated structure showed that purified(More)
Adherence to host cells is important in microbial colonization of a mucosal surface, and Streptococcus pneumoniae adherence was significantly enhanced by expression of an extracellular pilus composed of three subunits, RrgA, RrgB and RrgC. We sought to determine which subunit(s) confers adherence. Bacteria deficient in RrgA are significantly less adherent(More)
Pathogenic spirochetes of the genus Leptospira are a major cause of human zoonotic infectious disease worldwide. After gaining entry through the skin, the organism causes disease by hematogenously disseminating to multiple organs. The mechanism by which it penetrates the mammalian cell barriers to disseminate is not well understood. In this study, we used a(More)
Streptococci are clinically important Gram-positive bacteria that are capable to cause a wide variety of diseases in humans and animals. Phylogenetic analyses based on 16S rRNA sequences of the streptococcal species reveal a clustering pattern, reflecting, with a few exceptions, their pathogenic potential and ecological preferences. Microbial adhesion to(More)
Streptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy(More)
The Streptococcus pneumoniae pilus-1 is encoded by pilus islet 1 (PI-1), which has three clonal variants (clade I, II and III) and is present in about 30% of clinical pneumococcal isolates. In vitro and in vivo assays have demonstrated that pilus-1 is involved in attachment to epithelial cells and virulence, as well as protection in mouse models of(More)
UNLABELLED Pneumococcal pili have been shown to influence pneumococcal colonization, disease development, and the inflammatory response in mice. The role of the pilus-associated RrgA adhesin in pneumococcal interactions with murine and human macrophages was investigated. Expression of pili with RrgA enhanced the uptake of pneumococci by murine and human(More)
The involvement of pathogenic bacteria in obstructive sleep apnoea syndrome (OSAS) has yet to be elucidated. We investigated the possible role of group A streptococcus (GAS) in OSAS pathogenesis. In 40 tonsillectomized patients affected by OSAS and 80 healthy controls, significant (p < 0.0001) association of GAS with paediatric OSAS was found. Supernatant(More)
Streptococcus pneumoniae pilus islet-1 (PI-1)-encoded pilus enhances in vitro adhesion to the respiratory epithelium and may contribute to pneumococcal nasopharyngeal colonization and transmission. The pilus subunits are regarded as potential protein vaccine candidates. In this study, we sought to determine PI-1 prevalence in carried pneumococcal isolates(More)
Multi-Locus Sequence Typing (MLST) of Streptococcus pneumoniae is based on the sequence of seven housekeeping gene fragments. The analysis of MLST allelic profiles by eBURST allows the grouping of genetically related strains into Clonal Complexes (CCs) including those genotypes with a common descent from a predicted ancestor. However, the increasing use of(More)