Micah Litow

Learn More
Recently we presented a method for the assessment of in vivo forces on pectoral device implants motivated from technological and clinical advancements toward smaller implantable cardiac pacemakers and the altered structural demands arising from the reduced device size. Objective of this study was the investigation of the intra-species proportionality of(More)
Spaceflight has been shown to cause atrophy, reduced functional capacity, and increased fatigue in lower-limb skeletal muscles. The mechanisms of these losses are not fully understood but are thought to result, in part, from alteration in muscle usage. Knee-joint angles and lower-extremity muscle activity were measured continually, via elecrogoniometry and(More)
Reduced sizes of implantable cardiac pacemakers and clinical advances have led to a higher feasibility of using such devices in younger patients including children. Increased structural demands deriving from reduced device size and more active recipients require detailed knowledge of in vivo mechanical conditions to ensure device reliability. Objective of(More)
With the steady technological development enabling reduced device dimensions and new patient populations, detailed data on mechanical in vivo loads become increasingly important to ensure reliability of implantable medical devices. Based on an intra-species correlation of in-line and transverse force of the Pectoralis major established previously for the(More)
  • 1