Miaw-chyi Luo

Learn More
We have developed a highly effective method for in vivo gene silencing in the spinal cord and dorsal root ganglia (DRG) by a cationic lipid facilitated delivery of synthetic, small interfering RNA (siRNA). A siRNA to the delta opioid receptor (DOR), or a mismatch RNA, was mixed with the transfection reagent, i-Fect (vehicle), and delivered as repeated daily(More)
The potential modulation of TRPV1 nociceptive activity by the CB(1) receptor was investigated here using CB(1) wild-type (WT) and knock-out (KO) mice as well as selective CB(1) inverse agonists. No significant differences were detected in baseline thermal thresholds of ICR, CB(1)WT or CB(1)KO mice. Intraplantar capsaicin produced dose- and time-related paw(More)
The endogenous opioid peptide dynorphin A is distinct from other endogenous opioid peptides in having significant neuronal excitatory and neurotoxic effects that are not mediated by opioid receptors. Some of these non-opioid actions of dynorphin contribute to the development of abnormal pain resulting from a number of pathological conditions. Identifying(More)
Dynorphin A is an endogenous opioid peptide that produces non-opioid receptor-mediated neural excitation. Here we demonstrate that dynorphin induces calcium influx via voltage-sensitive calcium channels in sensory neurons by activating bradykinin receptors. This action of dynorphin at bradykinin receptors is distinct from the primary signaling pathway(More)
UNLABELLED An upregulation of the endogenous opioid, dynorphin A, in the spinal cord is seen in multiple experimental models of chronic pain. Recent findings implicate a direct excitatory action of dynorphin A at bradykinin receptors to promote hyperalgesia in nerve injured rats, and its upregulation may promote, rather than counteract, enhanced nociceptive(More)
Cell therapy is thought to have a central role in restorative therapy, which aims to restore the function of the damaged nervous system. Neural stem cells (NSCs) can differentiate into neurons, astrocytes and oligodendrocytes. The purpose of this study was to evaluate the therapeutic effects of transplanting NSCs into rats which have the animal model of(More)
  • 1