Miao-Juei Huang

Learn More
Altered glycosylation is a hallmark of cancer. The core 1 β1,3-galactosyltransferase (C1GALT1) controls the formation of mucin-type O-glycans, far overlooked and underestimated in cancer. Here, we report that C1GALT1 mRNA and protein are frequently overexpressed in hepatocellular carcinoma tumors compared with nontumor liver tissues, where it correlates(More)
OBJECTIVES Oral squamous cell carcinoma (OSCC) is one of the leading cancers worldwide. Aberrant glycosylation affects many cellular properties in cancers, including OSCC. This study aimed to explore the role of N-acetylgalactosaminyltransferase 2 (GALNT2) in OSCC. MATERIALS AND METHODS Immunohistochemistry was performed to study the expression of GALNT2(More)
O-glycosylation is a common protein modification. Aberrant O-glycosylation is associated with many cancers. GALNT1 is a GalNAc-transferase that initiates protein O-glycosylation. We found that GALNT1 is frequently up-regulated in hepatocellular carcinoma (HCC) and is associated with poor patient survival. Overexpression of GALNT1 increased and knockdown(More)
Extracellular glycosylation is a critical determinant of malignant character. Here, we report that N-acetylgalactosaminyltransferase 2 (GALNT2), the enzyme that mediates the initial step of mucin type-O glycosylation, is a critical mediator of malignant character in hepatocellular carcinoma (HCC) that acts by modifying the activity of the epidermal growth(More)
Core 1 β1,3-galactosyltransferase (C1GALT1) transfers galactose (Gal) to N-acetylgalactosamine (GalNAc) to form Galβ1,3GalNAc (T antigen). Aberrant O-glycans, such as T antigen, are commonly found in colorectal cancer. However, the role of C1GALT1 in colorectal cancer remains unclear. Here we showed that C1GALT1 was frequently overexpressed in colorectal(More)
Cancer cell invasion and metastasis are the primary causes of treatment failure and death in hepatocellular carcinoma (HCC). We previously reported that core 1 β1,3-galactosyltransferase (C1GALT1) is frequently overexpressed in HCC tumors and its expression is associated with advanced tumor stage, metastasis, and poor survival. However, the underlying(More)
CONTEXT Preeclampsia is a pregnancy-specific disorder that features insufficient extravillous trophoblast (EVT) invasion. We have previously shown that MUC1 expression in human placenta increases with gestational age and inhibits choriocarcinoma cell invasion. OBJECTIVE Here, we studied whether MUC1 expression in preeclamptic placentas is dysregulated and(More)
Infantile hemangiomas are localized lesions comprised primarily of aberrant endothelial cells. COSMC plays a crucial role in blood vessel formation and is characterized as a molecular chaperone of T-synthase which catalyzes the synthesis of T antigen (Galβ1,3GalNAc). T antigen expression is associated with tumor malignancy in many cancers. However, roles of(More)
Cancer stem cells are cancer cells characterized with tumor initiating capacity. β1,4-N-acetylgalactosaminyltransferase III (B4GALNT3) synthesizes GalNAcβ1-4GlcNAc (LacdiNAc) which contributes to self-renewal of mouse embryonic stem cells. We previously showed that B4GALNT3 overexpression enhances colon cancer cell malignant phenotypes in vitro and in vivo.(More)
PURPOSE Neuroblastoma (NB) is a neural crest-derived tumor that commonly occurs in childhood. β-1,4-Galactosyltransferase III (B4GALT3) is highly expressed in human fetal brain and is responsible for the generation of poly-N-acetyllactosamine, which plays a critical role in tumor progression. We therefore investigated the expression and role of B4GALT3 in(More)