Miao Jiang

Learn More
Cytochrome P450 (CYP) 4A1 has been characterized as the most efficient arachidonic acid omega-hydroxylase catalyzing the formation of 20-hydroxyeicosatetraenoic acid (20-HETE), a potent constrictor of the renal and cerebral microcirculation and a mitogen for smooth muscle cells. We constructed adenoviruses expressing the CYP4A1 cDNA or LacZ under the(More)
The nsp14 protein is an exoribonuclease that is encoded by severe acute respiratory syndrome coronavirus (SARS-CoV). We have cloned and expressed the nsp14 protein in Escherichia coli, and characterized the nature and the role(s) of the metal ions in the reaction chemistry. The purified recombinant nsp14 protein digested a 5'-labeled RNA molecule, but(More)
Glycosylation in liver is one of the most biologically important protein modifications. It plays critical roles in many physiological and pathological processes by virtue of its unique location at the blood-tissue interface, including angiogenesis, liver cancer, cirrhosis, and fibrosis. To analyze glycosylation of plasma membrane proteins in liver(More)
Vascular smooth muscle (VSM) expresses calcium/calmodulin-dependent protein kinase II (CaMKII)-δ and -γ isoforms. CaMKIIδ promotes VSM proliferation and vascular remodeling. We tested CaMKIIγ function in vascular remodeling after injury. CaMKIIγ protein decreased 90% 14 d after balloon injury in rat carotid artery. Intraluminal transduction of adenovirus(More)
20-Hydroxyeicosatetraenoic acid (20-HETE), which promotes renal vasoconstriction, is formed in the rat kidney primarily by cytochrome P-450 (CYP) 4A isoforms (4A1, 4A2, 4A3, 4A8). Nitric oxide (NO) has been shown to bind to the heme moiety of the CYP4A2 protein and to inhibit 20-HETE synthesis in renal arterioles of male rats. However, it is not known(More)
Traditional Chinese medicine (TCM) formulas with fixed combinations rely on "sovereign, minister, assistant and guide" and fuzzy mathematical quantitative law, leading to greater challenges for the identification of active ingredients. Transformation and metabolic studies involving the Phase I drug-metabolizing enzyme cytochrome P450 (CYP) might potentially(More)
Recognition of viral genetic material takes place via several different receptor systems, such as retinoic acid-inducible gene I-like receptors and TLRs 3, 7, 8, and 9. At present, systematic comparison of the ability of different types of RNAs to induce innate immune responses in human immune cells has been limited. In this study, we generated(More)
Activation of host innate antiviral responses are mediated by retinoic-acid inducible gene I (RIG-I)-like receptors, RIG-I and melanoma differentiation-associated gene 5, and TLRs 3, 7, 8 and 9, recognising different types of viral nucleic acids. The major components of the RIG-I- and TLR pathways have putatively been identified, but previously unrecognised(More)
20-hydroxyeicosatetraenoic acid (20-HETE), a CYP4A-derived arachidonic acid metabolite, is a potent vasoconstrictor and a modulator of vascular reactivity. We have shown that CYP4A1 and CYP4A2 are the major CYP4A isoforms expressed in the rat renal microcirculation. In the present study, we constructed two bicistronic vectors, pIRES2-EGFP-4A1 and(More)
The multifunctional Ca(2+)/calmodulin-dependent protein kinase II δ-isoform (CaMKIIδ) promotes vascular smooth muscle (VSM) proliferation, migration, and injury-induced vascular wall neointima formation. The objective of this study was to test if microRNA-30 (miR-30) family members are endogenous regulators of CaMKIIδ expression following vascular injury(More)