Learn More
Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic(More)
Robust variable selection procedures through penalized regression have been gaining increased attention in the literature. They can be used to perform variable selection and are expected to yield robust estimates. However, to the best of our knowledge, the robustness of those penalized regression procedures has not been well characterized. In this paper, we(More)
This paper is concerned with quantile regression for a semiparametric regression model, in which both the conditional mean and conditional variance function of the response given the covariates admit a single-index structure. This semiparametric regression model enables us to reduce the dimension of the covariates and simultaneously retains the flexibility(More)
In this paper, we study a class of semiparametric mixtures of regression models, in which the regression functions are linear functions of the predictors, but the mixing proportions are smoothing functions of a covariate. We propose a one-step backfitting estimation procedure to achieve the optimal convergence rates for both regression parameters and the(More)
When the functional data are not homogeneous, e.g., there exist multiple classes of functional curves in the dataset, traditional estimation methods may fail. In this paper, we propose a new estimation procedure for the Mixture of Gaussian Processes, to incorporate both functional and inhomogeneous properties of the data. Our method can be viewed as a(More)
In this paper, we propose a semi-supervised learning method to simultaneous segmentation and labeling of parts in 3D garments. The key idea in this work is to analyze 3D garments using semi-supervised learning method which can label parts in various 3D garments. We first develop an objective function based on Conditional Random Field (CRF) model to learn(More)
Detecting how genes regulate biological shape has become a multidisciplinary research interest because of its wide application in many disciplines. Despite its fundamental importance, the challenges of accurately extracting information from an image, statistically modeling the high-dimensional shape and meticulously locating shape quantitative trait loci(More)
Medical information exchange and integration is the effective method to solve the interoperability and medical information island, and is the basis of medical information sharing. In this paper, we take medical texts and medical images as the basic integrated objects, DICOM, HL7 messages and datasets as the integrated units, efficient DI-COM, HL7 message(More)
Functional linear models are important tools for studying the relationship between functional response and covariates. However, if subjects come from an inhomogeneous population that demonstrates different linear relationship between the response and covariates among different subpopulations/clusters, a single functional linear model is no longer adequate(More)