Mette Assentoft

Learn More
Network activity in the brain is associated with a transient increase in extracellular K(+) concentration. The excess K(+) is removed from the extracellular space by mechanisms proposed to involve Kir4.1-mediated spatial buffering, the Na(+)/K(+)/2Cl(-) cotransporter 1 (NKCC1), and/or Na(+)/K(+)-ATPase activity. Their individual contribution to [K(+)]o(More)
Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. AQP4 has been described as an important entry and exit site for water during formation of brain edema and regulation of AQP4 is therefore of therapeutic interest. Phosphorylation of some(More)
Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. AQP4 serves as a water entry site during brain edema formation, and regulation of AQP4 may therefore be of therapeutic interest. Phosphorylation of aquaporins can regulate plasma membrane(More)
Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain–blood interface. Based on studies on AQP4−/− mice, AQP4 has been assigned physiological roles in stimulus-induced K+ clearance, paravascular fluid flow, and brain edema formation. Conflicting data have been(More)
Herein, we investigated whether G protein-coupled signaling via the vasopressin receptors of the V1a and V2 subtypes (V1aR and V2R) could be obtained as a direct response to hyperosmolar challenges and/or whether hyperosmolar challenges could augment classical vasopressin-dependent V1aR signaling. The V1aR-dependent response was monitored indirectly via its(More)
  • 1