Learn More
Diabetic foot ulcers are known to have a biomechanical etiology. Among the mechanical factors that cause foot lesions, shear stresses have been either neglected or underestimated. The purpose of this study was to determine various plantar pressure and shear variables in the diabetic and control groups and compare them. Fifteen diabetic patients with(More)
Plantar shear stresses are believed to play a major role in diabetic ulceration. Due to the lack of commercial devices that can measure plantar shear distribution, a number of mathematical models have been developed to predict plantar frictional forces. This study assessed the accuracy of these models using a custom-built platform capable of measuring(More)
BACKGROUND The exact pathology of diabetic foot ulcers remains to be resolved. Evidence suggests that plantar shear forces play a major role in diabetic ulceration. Unfortunately, only a few manuscripts exist on the clinical implications of plantar shear. The purpose of this study was to compare global and regional peak plantar stress values in three(More)
BACKGROUND Rheumatoid arthritis is an autoimmune disease that causes chronic, progressive joint inflammation; it commonly affects the joints of the feet. Biomechanical alterations and daily pain in the foot are the common outcomes of the disease. Earlier studies focusing on plantar pressure in such patients reported increased vertical loading along with(More)
Diabetic foot ulcers have a biomechanical etiology related to triaxial plantar stresses (3DS) (1). Bergtholdt and Brand (2) suggested that the foot would heat up before breaking down, indicating that elevated 3DS in the diabetic foot would result in inflammation that could be monitored by thermography. The purpose of this study was to explore the(More)
Diabetic foot ulcers are caused by moderate repetitive plantar stresses in the presence of peripheral neuropathy. In severe cases, the development of these foot ulcers can lead to lower extremity amputations. Plantar pressure measurements have been considered a capable predictor of ulceration sites in the past, but some investigations have pointed out(More)
Shear forces under the human foot are thought to be responsible for various foot pathologies such as diabetic plantar ulcers and athletic blisters. Frictional shear forces might also play a role in the metatarsalgia observed among hallux valgus (HaV) and rheumatoid arthritis (RA) patients. Due to the absence of commercial devices capable of measuring shear(More)
BACKGROUND Hallux valgus is a common foot disorder often experienced with secondary callosities and metatarsalgia. Many factors including improper shoes might be responsible in the pathophysiology of the problem. Hallux valgus deformity has been shown to alter the biomechanics of the whole foot rather than affecting only the great toe. Due to changes in the(More)
Multislice CT scanners are the newest class of CT scanners and they have not one but many detectors. These scanners can acquire up to 4 slices of data from the body in the same time it takes a single-slice CT scanner to acquire one. Multislice CT allows for rapid cardiac imaging during a single breath-hold. A multislice scanner operated in helical mode(More)