Meseret Ashenafi

Learn More
The chloramphenicol producer Streptomyces venezuelae contains an enzyme, SvTrpEG, that has a high degree of amino acid sequence similarity to the phenazine biosynthetic enzyme PhzE of certain species of Pseudomonas. PhzE has the sequence signature of an anthranilate synthase, but recent evidence indicates that it catalyzes the production of(More)
Discovered in the 1940s by Selman Waksman, the aminoglycoside antibiotic streptomycin is clinically important in the treatment of tuberculosis worldwide. However, strains of Mycobacterium tuberculosis and other pathogenic bacteria have become resistant to streptomycin. One mechanism by which this can occur is through the action of phosphotransferases that(More)
In the current study, we developed a HPLC method to quantitatively measure the permeability of the BpT-based chelators, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT) and 2-benzoylpyridine 4-allyl-3-thiosemicarbazone (Bp4aT), across human colorectal adenocarcinoma (Caco-2) monolayers as a model of gut absorption. In aqueous solution, Bp4eT and Bp4aT(More)
As part of an overall project to characterize the streptomycin phosphotransferase enzyme APH(6)-Id, which confers bacterial resistance to streptomycin, we cloned, expressed, purified, and characterized the enzyme. When expressed in Escherichia coli, the recombinant enzyme increased by up to 70-fold the minimum inhibitory concentration needed to inhibit cell(More)
Recently, we showed that the fused chorismate-utilizing enzyme from the antibiotic-producing soil bacterium Streptomyces venezuelae is an anthranilate synthase (designated SvAS), not a 2-amino-2-deoxyisochorismate (ADIC) synthase, as was predicted based on its amino acid sequence similarity to the phenazine biosynthetic enzyme PhzE (an ADIC synthase). Here,(More)
  • 1