Merja H Voutilainen

Learn More
In Parkinson's disease, brain dopamine neurons degenerate most prominently in the substantia nigra. Neurotrophic factors promote survival, differentiation and maintenance of neurons in developing and adult vertebrate nervous system. The most potent neurotrophic factor for dopamine neurons described so far is the glial-cell-line-derived neurotrophic factor(More)
Neurotrophic factors are promising candidates for the treatment of Parkinson's disease (PD). Mesencephalic astrocyte-derived neurotrophic factor (MANF) belongs to a novel evolutionarily conserved family of neurotrophic factors. We examined whether MANF has neuroprotective and neurorestorative effect in an experimental model of PD in rats. We also studied(More)
Cerebral dopamine neurotrophic factor (CDNF) is a recently discovered protein, which belongs to the evolutionarily conserved CDNF/MANF family of neurotrophic factors. The degeneration of dopamine neurons following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment is well characterized, and efficacy in this model is considered a standard(More)
Cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) constitute a novel, evolutionarily conserved family of neurotrophic factors (NTF) expressed in vertebrates and invertebrates. The effects of two-week infusions of CDNF, MANF and glial cell line-derived neurotrophic factor (GDNF) were studied in a rat(More)
Neuronal nicotinic acetylcholine receptors subserve predominantly modulatory roles in the brain, making them attractive therapeutic targets. Natural products provide key leads in the quest for nicotinic receptor subtype-selective compounds. Cytisine, found in Leguminosae spp., binds with high affinity to alpha4beta2* nicotinic receptors. We have compared(More)
Local inhibitory GABAergic and excitatory glutamatergic neurons are important for midbrain dopaminergic and hindbrain serotonergic pathways controlling motivation, mood, and voluntary movements. Such neurons reside both within the dopaminergic nuclei, and in adjacent brain structures, including the rostromedial and laterodorsal tegmental nuclei. Compared(More)
The anti-inflammatory effect of the cerebral dopamine neurotrophic factor (CDNF) was shown recently in primary glial cell cultures, yet such effect remains unknown both in vivo and in 6-hydroxydopamine (6-OHDA) models of Parkinson’s disease (PD). We addressed this issue by performing an intranigral transfection of the human CDNF (hCDNF) gene in the critical(More)
Cerebral dopamine neurotrophic factor (CDNF) protein has been shown to protect the nigrostriatal dopaminergic pathway when given as intrastriatal infusions in rat and mouse models of Parkinson's disease (PD). In this study, we assessed the neuroprotective effect of CDNF delivered with a recombinant adeno-associated viral (AAV) serotype 2 vector in a rat(More)
Parkinson's disease (PD) is a progressive neurodegenerative disorder where dopamine (DA) neurons in the substantia nigra degenerate and die. Since no cure for PD exists, there is a need for disease-modifying drugs. Glial cell line-derived neurotrophic factor (GDNF) and related neurturin (NRTN) can protect and repair DA neurons in neurotoxin animal models of(More)
Intrastriatal administration of 6-hydroxydopamine (6-OHDA) induces partial degeneration of the nigrostriatal pathway, mimicking the pathology of Parkinson's disease (PD). Setting up the partial lesion model can be challenging because a number of experimental settings can be altered. This study compares seven experimental settings in a single study on(More)