Merei Huigsloot

Learn More
Decreased phosphorylation of focal adhesion kinase and paxillin is associated with loss of focal adhesions and stress fibers and precedes the onset of apoptosis (van de Water, B., Nagelkerke, J. F., and Stevens, J. L. (1999) J. Biol. Chem. 274, 13328-13337). The cortical actin cytoskeletal network is also lost during apoptosis, yet little is known about the(More)
Decreased phosphorylation of focal adhesion kinase (FAK) is associated with loss of focal adhesions and actin stress fibers and precedes the onset of apoptosis in renal epithelial cells caused by nephrotoxicants (Van de Water, B., Nagelkerke, J. F., and Stevens, J. L. (1999) J. Biol. Chem. 274, 13328-13337). The role of FAK in the control of apoptosis(More)
OXPHOS deficits are associated with most reported cases of inherited, degenerative and acquired mitochondrial disease. Traditional methods of measuring OXPHOS activities in patients provide valuable clinical information but require fifty to hundreds of milligrams of biopsy tissue samples in order to isolate mitochondria for analysis. We have worked to(More)
We report a fragmented mitochondrial network and swollen and irregularly shaped mitochondria with partial to complete loss of the cristae in fibroblasts of a patient with a novel TMEM70 gene deletion, which could be completely restored by complementation of the TMEM70 genetic defect. Comparative genomics analysis predicted the topology of TMEM70 in the(More)
Focal adhesion kinase (FAK) is up-regulated in a variety of cancers, including breast cancer, in association with poor disease prognosis. In the present study, we examined the role of FAK in the control of anticancer drug-induced apoptosis of mammary adenocarcinoma MTLn3 cells. Doxorubicin caused the formation of well defined focal adhesions and stress(More)
The assembly of mitochondrial respiratory chain complex IV (cytochrome c oxidase) involves the coordinated action of several assembly chaperones. In Saccharomyces cerevisiae, at least 30 different assembly chaperones have been identified. To date, pathogenic mutations leading to a mitochondrial disorder have been identified in only seven of the(More)
Accumulation of damage in undifferentiated cells may threaten homeostasis and regenerative capacity. Remarkably, p53 has been suggested to be transcriptionally inactive in these cells. To gain insight in the kinetics and interplay of the predominant transcriptional responses of DNA damage signalling pathways in undifferentiated cells, mouse embryonic stem(More)
BACKGROUND Muscle biopsy analysis is regarded as the gold standard in diagnostic workups of patients with suspected mitochondrial disorders. Analysis of cultured fibroblasts can provide important additional diagnostic information. The measurement of individual OXPHOS complexes does not always provide sufficient information about the functional state of the(More)
Various anticancer drugs cause mitochondrial perturbations in association with apoptosis. Here we investigated the involvement of caspase- and Bcl-2-dependent pathways in doxorubicin-induced mitochondrial perturbations and apoptosis. For this purpose, we set up a novel three-color flow cytometric assay using rhodamine 123, annexin V-allophycocyanin, and(More)
Caspase activation is a central event in the execution phase of apoptosis and is associated with phosphatidylserine (PS) externalization and DNA fragmentation. We investigated the role of caspase activity in anticancer drug-induced PS externalization and DNA fragmentation in MTLn3 cells. Caspase activation (DEVD-AMC cleavage) occurred in a time- and(More)