Meredith H Wilson

Learn More
The neuromuscular junction (NMJ) allows communication between motor neurons and muscle fibers. During development, marked morphological changes occur as the functional NMJ is formed. During the postnatal period of rapid growth and muscle enlargement, endplate size concurrently increases. Even beyond this period of pronounced plasticity, the NMJ undergoes(More)
PURPOSE The asthmatic airway responds to exercise by bronchodilation (BD) during and bronchoconstriction (BC) after exercise. A refractory period induced by an initial exercise challenge that provides protection against BC during a subsequent exercise bout has also been observed. However, no studies examining during-exercise response or refractoriness(More)
Preparation for the physical demands of competition often involves game simulation during practice. This paradigm is thought to promote physiological adaptations that enhance maximal performance. However, a mismatch between practice intensity and actual competition intensity may not provide adequate training to achieve optimal game-play fitness. The purpose(More)
BACKGROUND Physiological responses to exercise of moderate intensity and duration among aged compared to young adults have yet to be clearly defined. Further, the effects of aging on the rate and effectiveness of postexercise recovery are unknown. METHODS Here, selected physiological responses during and following exercise of the same relative intensity(More)
The objective of the present investigation was to determine the effects of muscle unloading-a form of subtotal disuse- on the morphology of the neuromuscular junction (NMJ) in younger and aged animals. Sixteen aged (22 months) and 16 young adult (8 months) male Fischer 344 rats were assigned to control and hindlimb suspension (HS) conditions (n=8/group). At(More)
The effects of microgravity were determined in muscles of differing function and myofiber-type composition. Rats were assigned either to a 10-day spaceflight mission or to ground-based control conditions. Following the experimental period, hindlimb muscles were obtained from both groups. Cytofluorescent techniques were used to examine neuromuscular(More)
Exposure to microgravity elevates blood pressure and flow in the head, which may increase intracranial volume (ICV) and intracranial pressure (ICP). Rhesus monkeys exposed to simulated microgravity in the form of 6 degrees head-down tilt (HDT) experience elevated ICP. With humans, twenty-four hours of 6 degrees HDT bed rest increases cerebral blood flow(More)
  • 1