Mercedes Martín-Rufián

Learn More
BACKGROUND Glutaminase is expressed in most mammalian tissues and cancer cells, but the regulation of its expression is poorly understood. An essential step to accomplish this goal is the characterization of its species- and cell-specific isoenzyme pattern of expression. Our aim was to identify and characterize transcript variants of the mammalian(More)
The expression of glutaminase in glial cells has been a controversial issue and matter of debate for many years. Actually, glutaminase is essentially considered as a neuronal marker in brain. Astrocytes are endowed with efficient and high capacity transport systems to recapture synaptic glutamate which seems to be consistent with the absence of glutaminase(More)
The synthesis of neurotransmitter glutamate in brain is mainly carried out by glutaminase enzymes. This synthesis must be exquisitely regulated because of its harmful potential giving rise to excitotoxic damage. It is noteworthy that two glutaminase isozymes coded by different genes are expressed in the brain of mammals. The need for two genes and two(More)
Glutamine/glutamate homeostasis must be exquisitely regulated in mammalian brain and glutaminase (GA, E.C. 3.5.1.2) is one of the main enzymes involved. The products of GA reaction, glutamate and ammonia, are essential metabolites for energy and biosynthetic purposes but they are also hazardous compounds at concentrations beyond their normal physiological(More)
Glutaminase is expressed in most mammalian tissues and cancer cells, but recent studies are now revealing a considerably degree of complexity in its pattern of expression and functional regulation. Novel transcript variants of the mammalian glutaminase Gls2 gene have been recently found and characterized in brain. Co-expression of different isoforms in the(More)
Mitochondrial glutaminase (GA) plays an essential role in cancer cell metabolism, contributing to biosynthesis, bioenergetics, and redox balance. Humans contain several GA isozymes encoded by the GLS and GLS2 genes, but the specific roles of each in cancer metabolism are still unclear. In this study, glioma SFxL and LN229 cells with silenced isoenzyme(More)
Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in(More)
Glutaminase is considered as the main glutamate producer enzyme in brain. Consequently, the enzyme is essential for both glutamatergic and gabaergic transmissions. Glutamine-derived glutamate and ammonia, the products of glutaminase reaction, fulfill crucial roles in energy metabolism and in the biosynthesis of basic metabolites, such as GABA, proteins and(More)
  • 1