Mercedes Guzmán-Casado

Learn More
Ribonucleases H from the thermophilic bacterium Thermus thermophilus and the mesophile Escherichia coli demonstrate a dramatic and surprising difference in their change in heat capacity upon unfolding (DeltaCp degrees ). The lower DeltaCp degrees of the thermophilic protein directly contributes to its higher thermal denaturation temperature (Tm). We propose(More)
NMR studies on the denatured states of proteins indicate that residual structure often resides predominantly in hydrophobic clusters. Such hydrophobic cluster formation implies burial of apolar surface and, consequently, is expected to cause a decrease in heat capacity. We report here that, in the case of ribonuclease H from the thermophile Thermus(More)
(1998) Strategies for cloning unknown cellular flanking DNA sequences from foreign inte-grants. (1994) PCR with end trimming and cassette ligation: A rapid method to clone exon-intron boundaries and a 5Ј-upstream sequences of genomic DNA based on a cDNA sequence. Amplification of 4 –9 kb human genomic DNA flanking a known site using a panhan-dle PCR(More)
The binding of myo-inositol hexasulfate to an N-terminal truncated 132-amino-acid human acidic fibroblast growth factor form was studied by isothermal titration calorimetry. The technique yields values for the enthalpy change and equilibrium constant, from which the Gibbs energy and entropy change can also be calculated. Experiments in different buffers and(More)
The binding of low-molecular-weight heparin to an amino-terminal-truncated, 132-amino-acid, human acidic fibroblast growth factor form has been studied by isothermal titration calorimetry. This technique yields values for the enthalpy change and equilibrium constant, from which the Gibbs energy and entropy change are also calculated. Experiments in(More)
The interaction of an amino-terminal-truncated 139 amino-acids form of human acidic fibroblast growth factor with myo-inositol hexasulphate and low molecular weight (3500 g mol(-1)) heparin has been studied by isothermal titration calorimetry, differential scanning calorimetry and Fourier transform infrared spectroscopy. A slightly higher affinity for the(More)
  • 1