Learn More
Speech comprehension depends on the integrity of both the spectral content and temporal envelope of the speech signal. Although neural processing underlying spectral analysis has been intensively studied, less is known about the processing of temporal information. Most of speech information conveyed by the temporal envelope is confined to frequencies below(More)
The performance of adult humans in simple visual tasks improves dramatically with practice. This improvement is highly specific to basic attributes of the trained stimulus, suggesting that the underlying changes occur at low-level processing stages in the brain, where different orientations and spatial frequencies are handled by separate channels. We asked(More)
Practising simple visual tasks leads to a dramatic improvement in performing them. This learning is specific to the stimuli used for training. We show here that the degree of specificity depends on the difficulty of the training conditions. We find that the pattern of specificities maps onto the pattern of receptive field selectivities along the visual(More)
Perceptual learning can be defined as practice-induced improvement in the ability to perform specific perceptual tasks. We previously proposed the Reverse Hierarchy Theory as a unifying concept that links behavioral findings of visual learning with physiological and anatomical data. Essentially, it asserts that learning is a top-down guided process, which(More)
We propose that explicit vision advances in reverse hierarchical direction, as shown for perceptual learning. Processing along the feedforward hierarchy of areas, leading to increasingly complex representations, is automatic and implicit, while conscious perception begins at the hierarchy's top, gradually returning downward as needed. Thus, our initial(More)
Training induces dramatic improvement in the performance of pop-out detection. In this study, we examined the specificities of this improvement to stimulus characteristics. We found that learning is specific within basic visual dimensions: orientation, size and position. Accordingly, following training with one set of orientations, rotating target and(More)
Revealing the relationships between perceptual representations in the brain and mechanisms of adult perceptual learning is of great importance, potentially leading to significantly improved training techniques both for improving skills in the general population and for ameliorating deficits in special populations. In this review, we summarize the essentials(More)
A broad battery of psychoacoustic measures and standard measures of reading and spelling were applied to 102 adults. The test group included individuals with a childhood history of reading difficulties and controls with no reported reading difficulties. Reading scores were variable in both groups. Poor auditory processing abilities were recorded in poor(More)
The majority of individuals with dyslexia and additional learning difficulties (D-LDs) also perform poorly on many simple auditory discrimination tasks. We now trained a group of D-LD teenagers on a series of auditory tasks and assessed their pattern of auditory improvement as well as their generalization to reading related tasks. We found that the(More)
1. Neuronal mechanisms for decoding sound azimuth and angular movement were studied by recordings of several single units in parallel in the core areas of the auditory cortex of the macaque monkey. The activity of 180 units was recorded during the presentation of moving and static sound stimuli. Both the activity of single units and the interactions between(More)