Mentor Sopjani

Learn More
Janus kinase-2 (JAK2), a signaling molecule mediating effects of various hormones including leptin and growth hormone, has previously been shown to modify the activity of several channels and carriers. Leptin is known to inhibit and growth hormone to stimulate epithelial Na+ transport, effects at least partially involving regulation of the epithelial Na+(More)
Janus kinase-2 (JAK2) participates in the signaling of several hormones, growth factors and cytokines. Further stimulators of JAK2 include osmotic cell shrinkage, and the kinase activates the cell volume regulatory Na+/H+ exchanger. The kinase may thus participate in cell volume regulation. Cell shrinkage is known to inhibit K+ channels. Volume-regulatory(More)
The Na(+),glutamate cotransporter EAAT2 is expressed in astrocytes and clears glutamate from the synaptic cleft. EAAT2 dependent currrent is stimulated by the serum and glucocorticoid inducible kinase SGK1. Phosphorylation targets of SGK1 include the human phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3). Nothing is known, however, on the role of(More)
Glycogen synthase kinase 3 GSK3β participates in a wide variety of functions including regulation of glucose metabolism. It is ubiquitously expressed including epithelial tissues. However, whether GSK3β participates in the regulation of epithelial transport is not known. The present study thus explored whether GSK3β influences the Na(+)-coupled transport of(More)
The glutamate transporters EAAT3 and EAAT4 are expressed in neurons. They contribute to the cellular uptake of glutamate and aspartate and thus to the clearance of the excitatory transmitters from the extracellular space. During ischemia, extracellular accumulation of glutamate may trigger excitotoxicity. Energy depletion leads to activation of the(More)
INTRODUCTION According to previous observations, the gene encoding the phosphatidylinositol-4-phosphate 5-kinase II alpha (PIP5K2A) is associated with schizophrenia. Specifically, the mutation (N251S)PIP5K2A has been discovered in schizophrenic patients but not in healthy individuals. A defect of the excitatory amino acid transporter EAAT3 has similarly(More)
The energy-sensing AMP-activated serine/threonine protein kinase (AMPK) confers cell survival in part by stimulation of cellular energy production and limitation of cellular energy utilization. AMPK-sensitive functions further include activities of epithelial Na+ channel ENaC and voltage-gated K+ channel KCNE1/KCNQ1. AMPK is activated by an increased(More)
Rapamycin, an inhibitor of the serine/threonine kinase mammalian target of rapamycin (mTOR), is a widely used immunosuppressive drug. Rapamycin affects the function of dendritic cells (DCs), antigen-presenting cells participating in the initiation of primary immune responses and the establishment of immunological memory. Voltage-gated K(+) (Kv) channels are(More)
The 5′-adenosine monophosphate-activated serine/threonine protein kinase (AMPK) is stimulated by energy depletion, increase in cytosolic Ca2+ activity, oxidative stress, and nitric oxide. AMPK participates in the regulation of the epithelial Na+ channel ENaC and the voltage-gated K+ channel KCNE1/KCNQ1. It is partially effective by decreasing PIP2 formation(More)
The myoinositol transporter SMIT (SLC5A3) and the betaine/γ-aminobutyric acid (GABA) transporter BGT1 (SLC6A12) accomplish cellular accumulation of organic osmolytes and thus contribute to cell volume regulation. Challenges of cell volume constancy include energy depletion, which compromises the function of the Na(+)/K(+) ATPase leading to cellular Na(+)(More)
  • 1