Learn More
The immunoglobulin heavy-chain (Igh) locus is organized into distinct regions that contain multiple variable (V(H)), diversity (D(H)), joining (J(H)) and constant (C(H)) coding elements. How the Igh locus is structured in 3D space is unknown. To probe the topography of the Igh locus, spatial distance distributions were determined between 12 genomic markers(More)
Deficiency of X-linked inhibitor of apoptosis (XIAP) caused by XIAP/BIRC4 gene mutations is an inherited immune defect recognized as X-linked lymphoproliferative syndrome type 2. This disease is mainly observed in patients with hemophagocytic lymphohistiocytosis (HLH) often associated with Epstein–Barr virus infection. We described nine Japanese patients(More)
The adaptive immune system generates a specific response to a vast spectrum of antigens. This remarkable property is achieved by lymphocytes that each express single and unique antigen receptors. During lymphocyte development, antigen receptor coding elements are assembled from widely dispersed gene segments. The assembly of antigen receptors is controlled(More)
The contribution of proliferation to B lymphocyte homeostasis and antigen responses is largely unknown. We quantified the replication history of mouse and human B lymphocyte subsets by calculating the ratio between genomic coding joints and signal joints on kappa-deleting recombination excision circles (KREC) of the IGK-deleting rearrangement. This approach(More)
The vast majority of patients suffering from a primary immunodeficiency (PID) have defects in their T- and/or B-cell compartments. Despite advances in molecular diagnostics, in many patients no underlying genetic defect has been identified. B- and T-lymphocytes are unique in their ability to create a receptor by genomic rearrangement of their antigen(More)
To the Editor: In a recent issue of The Journal of Experimental Medicine, Thomas Rothstein and colleagues, a group with long-standing expertise in the field of mouse B1 cells, reported the description of a B1 B cell subset in human blood, a population that has thus far eluded identification (Griffin et al., 2011). Mouse B1 cells are the main constituents of(More)
Wiskott-Aldrich Syndrome protein (WASp) regulates the cytoskeleton in hematopoietic cells and mutations in its gene cause the Wiskott-Aldrich Syndrome (WAS), a primary immunodeficiency with microthrombocytopenia, eczema and a higher susceptibility to develop tumors. Autoimmune manifestations, frequently observed in WAS patients, are associated with an(More)
Primary immunodeficiency disorders enable identification of genes with crucial roles in the human immune system. Here we study patients suffering from recurrent bacterial, viral and Cryptosporidium infections, and identify a biallelic mutation in the MAP3K14 gene encoding NIK (NF-κB-inducing kinase). Loss of kinase activity of mutant NIK, predicted by in(More)
Antibody responses are thought to play an important role in control of Schistosoma infections, yet little is known about the phenotype and function of B cells in human schistosomiasis. We set out to characterize B cell subsets and B cell responses to B cell receptor and Toll-like receptor 9 stimulation in Gabonese schoolchildren with Schistosoma haematobium(More)
During B cell development, the precursor B cell receptor (pre-BCR) checkpoint is thought to increase immunoglobulin κ light chain (Igκ) locus accessibility to the V(D)J recombinase. Accordingly, pre-B cells lacking the pre-BCR signaling molecules Btk or Slp65 showed reduced germline V(κ) transcription. To investigate whether pre-BCR signaling modulates V(κ)(More)