Learn More
There is a long-standing interest in the role of endogenous opioid peptides in feeding behavior and, in particular, in the modulation of food reward and palatability. Since drugs such as heroin, morphine, alcohol, and cannabinoids, interact with this system, there may be important common neural substrates between food and drug reward with regard to the(More)
The present study was designed to further investigate the nature of feeding induced by opioid stimulation of the nucleus accumbens through an examination of the effects of intra-accumbens (ACB) opioids on macronutrient selection. In 3-hr tests of free-feeding (satiated) rats, intra-ACB administration of the mu receptor agonist D-Ala2,N,Me-Phe4,(More)
Our previous studies have shown that stimulation of mu-opioid receptors within the nucleus accumbens preferentially enhances intake of palatable food containing sucrose and fat; thus, opioids in this brain area may mediate the rewarding characteristics of food by modulating taste and macronutrient preference. The present study was designed to further(More)
Previous studies have indicated that central opioid peptides and opiate receptors play an important role in the modulation of ingestive behaviors. The nucleus accumbens (Acb), a forebrain region involved in reinforcement, contains high levels of opiate receptors. The present investigation was undertaken to determine the relative involvement of opiate(More)
Brain opioid peptide systems are known to play an important role in motivation, emotion, attachment behaviour, the response to stress and pain, and the control of food intake. Opioid peptides within the ventral striatum are thought to play a key role in the latter function, regulating the affective response to highly palatable, energy-dense foods such as(More)
Brain neuromedin U (NMU) has been associated with the regulation of both energy intake and expenditure. We hypothesized that NMU induces changes in spontaneous physical activity and nonexercise activity thermogenesis (NEAT) through its actions on hypothalamic nuclei. We applied increasing doses of NMU directly to the paraventricular (PVN) and arcuate(More)
Although acupuncture is widely used to manage pain, it remains highly controversial, largely due to the lack of a clear mechanism for its benefits. Here, we investigated the role of IL-33, a novel interleukin (IL)-1 family member, and its receptor ST2 in the analgesic effects of electroacupuncture (EA) on formalin-induced inflammatory pain. The results(More)
  • 1