Meng-Tse Chen

Learn More
Electrically excitable bovine adrenal chromaffin cells were exposed to nanosecond duration electric pulses at field intensities ranging from 2 MV/m to 8 MV/m and intracellular calcium levels ([Ca(2+)](i)) monitored in real time by fluorescence imaging of cells loaded with Calcium Green. A single 4 ns, 8 MV/m pulse produced a rapid, short-lived increase in(More)
In unexcitable, noncardiac cells, ultrashort (nanosecond) high-voltage (megavolt-per-meter) pulsed electrical fields (nsPEF) can mobilize intracellular Ca2+ and create transient nanopores in the plasmalemma. We studied Ca2+ responses to nsPEF in cardiac cells. Fluorescent Ca2+ or voltage signals were recorded from isolated adult rat ventricular myocytes(More)
The objective was to use carbon nanotubes (CNT) coupled with near-infrared radiation (NIR) to induce hyperthermia as a novel non-ionizing radiation treatment for primary brain tumors, glioblastoma multiforme (GBM). In this study, we report the therapeutic potential of hyperthermia-induced thermal ablation using the sequential administration of carbon(More)
Nanosecond, megavolt-per-meter electric pulses cause permeabilization of cells to small molecules, programmed cell death (apoptosis) in tumor cells, and are under evaluation as a treatment for skin cancer. We use nanoelectroporation and fluorescence imaging to construct two-dimensional maps of the electric field associated with delivery of 15 ns, 10 kV(More)
To add to the understanding of the properties of functionalized carbon nanotubes in biological applications, we report a monotonic pH sensitivity of the intracellular fluorescence emission of single-walled carbon nanotube-fluorescein carbazide (SWCNT-FC) conjugates in human ovarian cancer cells. Light-stimulated intracellular hydrolysis of the amide linkage(More)
  • 1