Menelas N. Pangalos

Learn More
Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which numerous mouse models have been generated. In both AD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of beta-amyloid (Abeta)-containing plaques and neurodegeneration. Characterization of the timing and nature of(More)
Many neurodegenerative diseases are caused by intracellular, aggregate-prone proteins, including polyglutamine-expanded huntingtin in Huntington's disease (HD) and mutant tau in fronto-temporal dementia/tauopathy. Previously, we showed that rapamycin, an autophagy inducer, enhances mutant huntingtin fragment clearance and attenuated toxicity. Here we show(More)
Estrogens have long been implicated in influencing cognitive processes, yet the molecular mechanisms underlying these effects and the roles of the estrogen receptors alpha (ERα) and beta (ERβ) remain unclear. Using pharmacological, biochemical and behavioral techniques, we demonstrate that the effects of estrogen on hippocampal synaptic plasticity and(More)
Endocannabinoids (eCBs) function as retrograde signaling molecules at synapses throughout the brain, regulate axonal growth and guidance during development, and drive adult neurogenesis. There remains a lack of genetic evidence as to the identity of the enzyme(s) responsible for the synthesis of eCBs in the brain. Diacylglycerol lipase-alpha (DAGLalpha) and(More)
The subventricular zone (SVZ) is a major site of neurogenesis in the adult. We now show that ependymal and proliferating cells in the adult mouse SVZ express diacylglycerol lipases (DAGLs), enzymes that synthesise a CB1/CB2 cannabinoid receptor ligand. DAGL and CB2 antagonists inhibit the proliferation of cultured neural stem cells, and the proliferation of(More)
Potassium channels are amongst the most heterogeneous class of ion channels known and are responsible for mediating a diverse range of biological functions. The most recently described family of K+ channels, the 'two pore-domain family', contain four membrane spanning domains and two pore-forming domains, suggesting that two channel subunits associate to(More)
Transgenic mice (Tg2576) overexpressing the Swedish mutation of the human amyloid precursor protein display biochemical, pathological, and behavioral markers consistent with many aspects of Alzheimer's disease, including impaired hippocampal function. Impaired, hippocampal-dependent, contextual fear conditioning (CFC) is observed in mice as young as 20(More)
The efficacy of synaptic inhibition depends on the number of gamma-aminobutyric acid type A receptors (GABA(A)Rs) expressed on the cell surface of neurons. The clathrin adaptor protein 2 (AP2) complex is a critical regulator of GABA(A)R endocytosis and, hence, surface receptor number. Here, we identify a previously uncharacterized atypical AP2 binding motif(More)
Inheritance of the apoE4 allele (epsilon4) increases the risk of developing Alzheimer's disease; however, the mechanisms underlying this association remain elusive. Recent data suggest that inheritance of epsilon4 may lead to reduced apoE protein levels in the CNS. We therefore examined apoE protein levels in the brains, CSF and plasma of epsilon2/2,(More)
Endothelial differentiation gene (Edg) proteins are G-protein-coupled receptors activated by lysophospholipid mediators: sphingosine-1-phosphate (S1P) or lysophosphatidic acid. We show that in the CNS, expression of Edg8/S1P5, a high-affinity S1P receptor, is restricted to oligodendrocytes and expressed throughout development from the immature stages to the(More)