Melody A Swartz

Learn More
No growth factors specific for the lymphatic vascular system have yet been described. Vascular endothelial growth factor (VEGF) regulates vascular permeability and angiogenesis, but does not promote lymphangiogenesis. Overexpression of VEGF-C, a ligand of the VEGF receptors VEGFR-3 and VEGFR-2, in the skin of transgenic mice resulted in lymphatic, but not(More)
Antigen targeting and adjuvancy schemes that respectively facilitate delivery of antigen to dendritic cells and elicit their activation have been explored in vaccine development. Here we investigate whether nanoparticles can be used as a vaccine platform by targeting lymph node-residing dendritic cells via interstitial flow and activating these cells by in(More)
Antigen-presenting dendritic cells often acquire foreign antigens in peripheral tissues such as the skin. Optimal encounter with naive T cells for the presentation of these antigens requires that the dendritic cells migrate to draining lymph nodes through lymphatic vessels. In this article, we review important aspects of what is known about dendritic-cell(More)
The emergence of tissue engineering raises new possibilities for the study of complex physiological and pathophysiological processes in vitro. Many tools are now available to create 3D tissue models in vitro, but the blueprints for what to make have been slower to arrive. We discuss here some of the 'design principles' for recreating the interwoven set of(More)
Interstitial flow plays important roles in the morphogenesis, function, and pathogenesis of tissues. To investigate these roles and exploit them for tissue engineering or to overcome barriers to drug delivery, a comprehensive consideration of the interstitial space and how it controls and affects such processes is critical. Here we attempt to review the(More)
The extracellular matrix (ECM) may contribute to the drug resistance of a solid tumor by preventing the penetration of therapeutic agents. We measured differences in interstitial resistance to macromolecule (IgG) motion in four tumor types and found an unexpected correspondence between transport resistance and the mechanical stiffness. The interstitial(More)
This paper presents an overview of the anatomy, physiology, and biology of the lymphatic system specifically relevant to lymphatic drug delivery. We will briefly review the classic fluid and solute transport literature, and also examine the current research in lymphatic endothelial cell biology and tumor metastasis in the lymphatics because of the(More)
The interstitium describes the fluid, proteins, solutes, and the extracellular matrix (ECM) that comprise the cellular microenvironment in tissues. Its alterations are fundamental to changes in cell function in inflammation, pathogenesis, and cancer. Interstitial fluid (IF) is created by transcapillary filtration and cleared by lymphatic vessels. Herein we(More)
The lymphatic system is important in tissue fluid balance regulation, immune cell trafficking, edema, and cancer metastasis, yet very little is known about the sequence of events that initiate and coordinate lymphangiogenesis. Here, we characterize the process of lymphatic regeneration by uniquely correlating interstitial fluid flow and lymphatic(More)
Cells are mechanically coupled to their extracellular environments, which play critical roles in both communicating the state of the mechanical environment to the cell as well as in mediating cellular response to a variety of stimuli. Along with the molecular composition and mechanical properties of the extracellular matrix (ECM), recent work has(More)