Melody A. Lever

Learn More
Compartmentalization of the nucleus is now recognized as an important level of regulation influencing specific nuclear processes. The mechanism of factor organization and the movement of factors in nuclear space have not been fully determined. Splicing factors, for example, have been shown to move in a directed manner as large intact structures from sites(More)
The considerable length of DNA in eukaryotic genomes requires packaging into chromatin to fit inside the small dimensions of the cell nucleus. Histone H1 functions in the compaction of chromatin into higher order structures derived from the repeating 'beads on a string' nucleosome polymer. Modulation of H1 binding activity is thought to be an important step(More)
We have used a combination of kinetic measurements and targeted mutations to show that the C-terminal domain is required for high-affinity binding of histone H1 to chromatin, and phosphorylations can disrupt binding by affecting the secondary structure of the C terminus. By measuring the fluorescence recovery after photo-bleaching profiles of green(More)
The cell nucleus is increasingly recognized as a spatially organized structure. In this review, the nature and controversies associated with nuclear compartmentalization are discussed. The relationship between nuclear structure and organization of proteins involved in the regulation of RNA polymerase II-transcribed genes is then discussed. Finally, very(More)
  • 1