Melissa Jan Spencer

Learn More
Dystrophin-deficient muscles experience large reductions in expression of nitric oxide synthase (NOS), which suggests that NO deficiency may influence the dystrophic pathology. Because NO can function as an antiinflammatory and cytoprotective molecule, we propose that the loss of NOS from dystrophic muscle exacerbates muscle inflammation and fiber damage by(More)
The hypothesis that changes in muscle activation and loading regulate the expression and activity of neuronal nitric oxide (NO) synthase (nNOS) was tested using in vitro and in vivo approaches. Removal of weight bearing from rat hindlimb muscles for 10 days resulted in a significant decrease in nNOS protein and mRNA concentration in soleus muscles, which(More)
The authors conducted a randomized, crossover, double-blind, placebo-controlled pilot study of albuterol in nine boys with dystrophinopathies. Primary outcomes were 1) isometric knee extensor and flexor strength; and 2) manual muscle testing (MMT). Isometric knee extensor strength and MMT scores were significantly higher in patients taking albuterol vs(More)
BACKGROUND Albuterol is a beta-2 agonist that has been demonstrated to increase muscle strength in studies in animals and humans. Based on a pilot study of extended-release albuterol Repetabs in children with dystrophinopathies, the authors conducted a randomized, double-blind, placebo-controlled study with a crossover design. METHODS Fourteen boys with(More)
Many features of dystrophin-deficient muscle pathology are not clearly related to the loss of mechanical support of the muscle membrane by dystrophin. In the present review, evidence that supports a role for the immune system in promoting the pathology of dystrophinopathy is presented. The findings summarized here indicate that specific, cellular immune(More)
We have previously demonstrated a role for T cells in Duchenne muscular dystrophy (DMD) using the mdx mouse and have shown that T cell killing of dystrophic muscle can occur through perforin-dependent and perforin-independent mechanisms. In this investigation, we explore the possibility that one perforin-independent mechanism utilized by the T cells is(More)
Dysbindin was identified as a dystrobrevin-binding protein potentially involved in the pathogenesis of muscular dystrophy. Subsequently, genetic studies have implicated variants of the human dysbindin-encoding gene, DTNBP1, in the pathogeneses of Hermansky-Pudlak syndrome and schizophrenia. The protein is a stable component of a multisubunit complex termed(More)
We examined the interdependence of calpain and protein kinase C (PKC) activities on neurite outgrowth in SH-SY-5Y human neuroblastoma cells. SH-SY-5Y cells elaborated neurites when deprived of serum or after a specific thrombin inhibitor, hirudin, was added to serum-containing medium. The extent of neurite outgrowth under these conditions was enhanced by(More)
An ice core in south Greenland covering the period 1869 to 1984 was analyzed for oxygen isotopes and chloride, nitrate, and sulfate concentrations. The data show that the "excess" (nonsea-salt) sulfate concentration has tripled since approximately 1900 to 1910 and the nitrate concentration has doubled since approximately 1955. The increases may be(More)
PURPOSE OF REVIEW Duchenne muscular dystrophy is a progressive muscle degenerative disease caused by dystrophin mutations. The purpose of this review is to highlight two emerging therapies designed to repair the primary genetic defect, called 'exon skipping' and 'nonsense codon suppression'. RECENT FINDINGS A drug, PTC124, was identified that suppresses(More)