Melissa G. Dominguez

Learn More
The effects of colony-stimulating factor 1 (CSF-1), the primary regulator of mononuclear phagocyte production, are thought to be mediated by the CSF-1 receptor (CSF-1R), encoded by the c-fms proto-oncogene. To investigate the in vivo specificity of CSF-1 for the CSF-1R, the mouse Csf1r gene was inactivated. The phenotype of Csf1(-)/Csf1r(-) mice closely(More)
Vascular development depends on the highly coordinated actions of a variety of angiogenic regulators, most of which apparently act downstream of vascular endothelial growth factor (VEGF). One potential such regulator is delta-like 4 ligand (Dll4), a recently identified partner for the Notch receptors. We generated mice in which the Dll4 gene was replaced(More)
Colony stimulating factor-1 (CSF-1) regulates the survival, proliferation and differentiation of mononuclear phagocytes. The osteopetrotic (op/op) mutant mouse is devoid of CSF-1 due to an inactivating mutation in the CSF-1 gene and is deficient in several mononuclear phagocyte subpopulations. To analyze more fully the requirement for CSF-1 in the(More)
The vasculature of the CNS is structurally and functionally distinct from that of other organ systems and is particularly prone to developmental abnormalities and hemorrhage. Although other embryonic tissues undergo primary vascularization, the developing nervous system is unique in that it is secondarily vascularized by sprouting angiogenesis from a(More)
A useful approach for exploring gene function involves generating mutant mice from genetically modified embryonic stem (ES) cells. Recent advances in genetic engineering of ES cells have shifted the bottleneck in this process to the generation of mice. Conventional injections of ES cells into blastocyst hosts produce F0 generation chimeras that are only(More)
One of the most effective approaches for determining gene function involves engineering mice with mutations or deletions in endogenous genes of interest. Historically, this approach has been limited by the difficulty and time required to generate such mice. We describe the development of a high-throughput and largely automated process, termed VelociGene,(More)
Colony-stimulating factor-1 (CSF-1) activation of the CSF-1 receptor (CSF-1R) causes Cbl protooncoprotein tyrosine phosphorylation, Cbl-CSF-1R association and their simultaneous multiubiquitination at the plasma membrane. The CSF-1R is then rapidly internalized and degraded, whereas Cbl is deubiquitinated in the cytoplasm without being degraded. We have(More)
Development of the vascular system depends on the highly coordinated actions of a variety of angiogenic regulators. Several of these regulators are members of the tyrosine kinase superfamily, including VEGF receptors and angiopoietin receptors, Tie1 and Tie2. Tyrosine kinase signaling is counter-regulated by the activity of tyrosine phosphatases, including(More)
Colony-stimulating factor 1 (CSF-1) regulates the survival, proliferation, and differentiation of mononuclear phagocytes. It is expressed as a secreted glycoprotein or proteoglycan found in the circulation or as a biologically active cell-surface glycoprotein. To investigate tissue CSF-1 regulation, CSF-1-null Csf1(op)/Csf1(op) mice expressing transgenes(More)
Macrophages are found throughout the male reproductive tract and its accessory glands. Mice homozygous for a null mutation (csfm(op)) in the gene for the mononuclear phagocytic growth factor colony-stimulating factor-1 (CSF-1) have a significantly lower density of macrophages, defined by the mononuclear phagocytic antigen F4/80, in the testis, cauda and(More)