Melissa D Muller

Learn More
Reconstructing cellular signaling networks and understanding how they work are major endeavors in cell biology. The scale and complexity of these networks, however, render their analysis using experimental biology approaches alone very challenging. As a result, computational methods have been developed and combined with experimental biology approaches,(More)
Dynamic interactions between intracellular networks regulate cellular homeostasis and responses to perturbations. Targeted therapy is aimed at perturbing oncogene addiction pathways in cancer, however, development of acquired resistance to these drugs is a significant clinical problem. A network-based computational analysis of global gene expression data(More)
To identify regulators of intracellular signaling, we targeted 541 kinases and kinase-related molecules with small interfering RNAs (siRNAs), and determined their effects on signaling with a functional proteomics reverse-phase protein array (RPPA) platform assessing 42 phospho and total proteins. The kinome-wide screen demonstrated a strong inverse(More)
Dynamic modulation of information flow within signaling networks allows the cell to respond to micro-environmental changes. This property of the cell, while being essential to survival and eliciting appropriate responses, can also be detrimental to the organism by allowing cancerous cells to evade regulation and proliferate. We determined if changes in(More)
Three experiments examined the processes mediating rat serial pattern learning for rule-consistent versus rule-violating pattern elements ("violation elements"). In all three experiments, rats were trained to press retractable levers in a circular array in a specific sequence for brain stimulation reward (BSR). Experiment 1 examined the role of lever(More)
The current experiment examined the factors that determine acquisition for elements of highly structured serial patterns. Three groups of rats were trained on three patterns with parallel rule-based hierarchical structure, but with 3-, 4-, or 5-element chunks, each with a final violation element. Once rats mastered their patterns, probe patterns were(More)
  • 1