Learn More
The Human Metabolome Database (HMDB, http://www.hmdb.ca) is a richly annotated resource that is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. Since its first release in 2007, the HMDB has been used to facilitate the research for nearly 100(More)
The Human Metabolome Database (HMDB) is currently the most complete and comprehensive curated collection of human metabolite and human metabolism data in the world. It contains records for more than 2180 endogenous metabolites with information gathered from thousands of books, journal articles and electronic databases. In addition to its comprehensive(More)
Most of the world's remaining petroleum resource has been altered by in-reservoir biodegradation which adversely impacts oil quality and production, ultimately making heavy oil. Analysis of the microorganisms in produced reservoir fluid samples is a route to characterization of subsurface biomes and a better understanding of the resident and living(More)
An early estimate of disease transmissibility is essential for a well-informed public health response to a newly emerged infectious disease. In this study, we ask what type and quantity of data are needed for useful estimation of the initial reproduction number (R). It is possible to estimate R from case incidence data alone when the growing incidence of(More)
We describe a method for calculating 95 per cent bounds for the current number of hidden cases and the future number of diagnosed cases during an outbreak of an infectious disease. A Bayesian Markov chain Monte Carlo approach is used to fit a model of infectious disease transmission that takes account of undiagnosed cases. Assessing this method on simulated(More)
One of the challenges in metabolomic profiling of complex biological samples is to identify new and unknown compounds. Typically, standards are used to help identify metabolites, yet standards cannot be purchased or readily synthesized for many unknowns. In this work we present a strategy of using human liver microsomes (HLM) to metabolize known endogenous(More)
  • 1