Melinda L. Cox

Learn More
Our study addressed the hypothesis that spinal release of endogenous opioids underlies Delta9-tetrahydrocannabinol (Delta9-THC)-induced antinociception in Freund's adjuvant-induced arthritic and nonarthritic rats. The paw-pressure test was used to assess the antinociceptive effects of Delta9-THC versus those of morphine, and opioid and cannabinoid(More)
Cannabinoid CB(2) receptors have been implicated in antinociception in animal models of both acute and chronic pain. We evaluated the role both cannabinoid CB(1) and CB(2) receptors in mechanonociception in non-arthritic and arthritic rats. The antinociceptive effect of Delta(9)-tetrahydrocannabinol (Delta(9)THC) was determined in rats following(More)
We have shown in past isobolographic studies that a small amount of Δ-tetrahydrocannabinol (Δ-THC) can enhance morphine antinociception in mice. However, previous studies of the Δ-THC/morphine interaction were performed using normal mice or rats and evaluated acute thermal antinociception. Less is known about cannabinoid and opioid interactions involved in(More)
We have shown in past isobolographic studies that a small amount of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) can enhance morphine antinociception in mice. However, previous studies of the Delta(9)-THC/morphine interaction were performed using normal mice or rats and evaluated acute thermal antinociception. Less is known about cannabinoid and opioid(More)
Polyarthritis induced by inoculation with complete Freund's adjuvant alters opioid peptides, but does not affect opioid receptor binding. This study was conducted to measure mu and delta opioid receptor-stimulated G-protein activity in brain and spinal cord of rats 19 days after injection of complete Freund's adjuvant or vehicle. Mu and delta(More)
  • 1