Melanie Zeppel

Learn More
Accurately quantifying evapotranspiration (ET) is essential for modelling regional-scale ecosystem water balances. This study assembled an ET data set estimated from eddy flux and sapflow measurements for 13 ecosystems across a large climatic and management gradient from the United States, China, and Australia. Our objectives were to determine the(More)
Nocturnal fluxes may be a significant factor in the annual water budget of forested ecosystems. Here, we assessed sap flow in two co-occurring evergreen species (Eucalyptus parramattensis and Angophora bakeri) in a temperate woodland for 2 years in order to quantify the magnitude of seasonal nocturnal sap flow (E(n)) under different environmental(More)
In water-limited systems, pulses of rainfall can trigger a cascade of plant physiological responses. However, the timing and size of the physiological response can vary depending on plant and environmental characteristics, such as rooting depth, plant size, rainfall amount, or antecedent soil moisture. We investigated the influence of pulses of rainfall on(More)
Total daily water use is a key factor influencing the growth of many terrestrial plants, and reflects both day-time and nocturnal water fluxes. However, while nocturnal sap flow (En) and stomatal conductance (gs,n) have been reported across a range of species, ecosystems and microclimatic conditions, the regulation of these fluxes remains poorly understood.(More)
17 18 The responses of canopy conductance to variation in solar radiation, vapour pressure deficit and soil 19 moisture have been extensively modelled using a Jarvis-Stewart (JS) model. Modelled canopy 20 conductance has then often been used to predict transpiration using the Penman-Monteith (PM) 21 model. We previously suggested an alternative approach in(More)
Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a(More)
Many species have the ability to resprout vegetatively after a substantial loss of biomass induced by environmental stress, including drought. Many of the regions characterised by ecosystems where resprouting is common are projected to experience more frequent and intense drought during the 21st Century. However, in assessments of ecosystem response to(More)
Relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and(More)
The response of nocturnal stomatal conductance (g(s,n)) to rising atmospheric CO(2) concentration ([CO(2)]) is currently unknown, and may differ from responses of daytime stomatal conductance (g(s,d)). Because night-time water fluxes can have a significant impact on landscape water budgets, an understanding of the effects of [CO(2)] and temperature on(More)