Learn More
The building-block hypothesis states that the GA works well when short, low-order, highly-t schemas recombine to form even more highly t higher-order schemas. The ability to produce tter and tter partial solutions by combining building blocks is believed to be a primary source of the GA's search power, but the GA research community currently lacks precise(More)
If the interests of the funding agencies provide any sort of measuring stick for the coming of age of a discipline, then it would seem that the study of " complex systems " has recently become must-see science. You would be hard pressed to find in any collection of recent requests for proposals an organization that is not looking to explicitly leverage the(More)
What makes a problem easy or hard for a genetic algorithm (GA)? This question has become increasingly important as people have tried to apply the GA to ever more diverse types of problems. Much previous work on this question has studied the relationship between GA performance and the structure of a given fitness function when it is is expressed as a Walsh(More)
Metastability is a common phenomenon. Many evolutionary processes, both natural and artificial, alternate between periods of stasis and brief periods of rapid change in their behavior. In this paper an analytical model for the dynamics of a mutation-only genetic algorithm (GA) is introduced that identifies a new and general mechanism causing metastability(More)
How does evolution produce sophisticated emergent computation in systems composed of simple components limited to local interactions? To model such a process, we used a genetic algorithm (GA) to evolve cellular automata to perform a computational task requiring globally-coordinated information processing. On most runs a class of relatively unsophisticated(More)
How does an evolutionary process interact with a decentralized, distributed system in order to produce globally coordinated behavior? Using a genetic algorithm (GA) to evolve cellular automata (CAs), we show that the evolution of spontaneous synchronization , one type of emergent coordination, takes advantage of the underlying medium's potential to form(More)