Learn More
Mitogen-activated protein (MAP) kinases comprise a family of ubiquitous proline-directed, protein-serine/threonine kinases, which participate in signal transduction pathways that control intracellular events including acute responses to hormones and major developmental changes in organisms. MAP kinases lie in protein kinase cascades. This review discusses(More)
Nearly all cell surface receptors utilize one or more of the mitogen-activated protein kinase cascades in their repertoire of signal transduction mechanisms. Recent advances in the study of such cascades include the cloning of genes encoding novel members of the cascades, further definition of the roles of the cascades in responses to extracellular signals,(More)
Microtubule-associated proteins (MAP), such as tau, modulate the extent and rate of microtubule assembly and play an essential role in morphogenetic processes, such as axonal growth. We have examined the mechanism by which tau affects microtubule polymerization by examining the kinetics of microtubule assembly and disassembly through direct observation of(More)
The structure of the active form of the MAP kinase ERK2 has been solved, phosphorylated on a threonine and a tyrosine residue within the phosphorylation lip. The lip is refolded, bringing the phosphothreonine and phosphotyrosine into alignment with surface arginine-rich binding sites. Conformational changes occur in the lip and neighboring structures,(More)
Nck, an adaptor protein composed of one SH2 and three SH3 domains, is a common target for a variety of cell surface receptors. We have identified a novel mammalian serine/threonine kinase that interacts with the SH3 domains of Nck, termed Nck Interacting Kinase (NIK). This kinase is most homologous to the Sterile 20 (Ste20) family of protein kinases. Of the(More)
We recently described the purification and cloning of extracellular signal-regulated kinase 1 (ERK1), which appears to play a pivotal role in converting tyrosine phosphorylation into the serine/threonine phosphorylations that regulate downstream events. We now describe cloning and characterization of two ERK1-related kinases, ERK2 and ERK3, and provide(More)
c-Jun transcriptional activity is stimulated by phosphorylation at two N-terminal sites: Ser-63 and -73. Phosphorylation of these sites is enhanced in response to a variety of extracellular stimuli, including growth factors, cytokines, and UV irradiation. New members of the mitogen-activated protein (MAP) kinase group of signal-transducing enzymes, termed(More)
Interaction with SV40 small tumor antigen (small t) compromised the ability of multimeric protein phosphatase 2A to inactivate the mitogen-activated protein kinase ERK1 and the mitogen-activated protein kinase kinase MEK1. Transient expression of small t in CV-1 cells activated MEK and ERK but did not affect Raf activity. Small t stimulated the growth of(More)
ERK1/2 MAP kinases are important regulators in cellular signaling, whose activity is normally reversibly regulated by threonine-tyrosine phosphorylation. In contrast, we have found that stress-induced ERK1/2 activity is downregulated by ubiquitin/proteasome-mediated degradation of ERK1/2. The PHD domain of MEKK1, a RING finger-like structure, exhibited E3(More)