Learn More
Fas-induced apoptosis is a critical process for normal immune system development and function. Although many molecular components in the Fas signaling pathway have been identified, a systematic understanding of how they work together to determine network dynamics and apoptosis itself has remained elusive. To address this, we generated a computational model(More)
Direct inhibition of transcription factor complexes remains a central challenge in the discipline of ligand discovery. In general, these proteins lack surface involutions suitable for high-affinity binding by small molecules. Here we report the design of synthetic, cell-permeable, stabilized alpha-helical peptides that target a critical protein-protein(More)
We report the unexpected finding that loss of Hh signaling through conditional deletion of Smoothened (Smo) in the adult hematopoietic compartment has no apparent effect on adult hematopoiesis, including peripheral blood count, number or cell-cycle status of stem or progenitor cells, hematopoietic colony-forming potential, long-term repopulating activity in(More)
In the hematopoietic system, Notch signaling specifies T cell lineage fate, in part through negative regulation of B cell and myeloid lineage development. However, we unexpectedly observed the development of megakaryocytes when using heterotypic cocultures of hematopoietic stem cells with OP9 cells expressing Delta-like1, but not with parental OP9 cells.(More)
JAK3 is a non-receptor tyrosine kinase, predominantly expressed in hematopoietic cells and that has been implicated in the signal transduction of the common gamma chain subfamily of cytokine receptors. As a result, JAK3 plays an essential role in hematopoieisis during T cell development. JAK3 inactivating mutations result in immunodeficiency syndromes(More)
Acute megakaryoblastic leukemia (AMKL) is a form of acute myeloid leukemia (AML) associated with a poor prognosis. The genetics and pathophysiology of AMKL are not well understood. We generated a knockin mouse model of the one twenty-two-megakaryocytic acute leukemia (OTT-MAL) fusion oncogene that results from the t(1;22)(p13;q13) translocation specifically(More)
The tyrosine kinase JAK3 plays a well-established role during normal lymphocyte development and is constitutively phosphorylated in several lymphoid malignancies. However, its contribution to lymphomagenesis remains elusive. In this study, we used the newly identified activating JAK3A572V mutation to elucidate the effect of constitutive JAK3 signaling on(More)
The NOTCH signaling pathway is implicated in a broad range of developmental processes, including cell fate decisions. However, the molecular basis for its role at the different steps of stem cell lineage commitment is unclear. We recently identified the NOTCH signaling pathway as a positive regulator of megakaryocyte lineage specification during(More)
Activated tyrosine kinases have been frequently implicated in the pathogenesis of cancer, including acute myeloid leukemia (AML), and are validated targets for therapeutic intervention with small-molecule kinase inhibitors. To identify novel activated tyrosine kinases in AML, we used a discovery platform consisting of immunoaffinity profiling coupled to(More)
To study the impact of oncogenic K-Ras on T-cell leukemia/lymphoma development and progression, we made use of a conditional K-Ras(G12D) murine knockin model, in which oncogenic K-Ras is expressed from its endogenous promoter. Transplantation of whole bone marrow cells that express oncogenic K-Ras into wild-type recipient mice resulted in a highly(More)