Learn More
Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric(More)
The emergence of atomically thick nanolayer materials, which feature a short ion diffusion channel and provide more exposed atoms in the electrochemical reactions, offers a promising occasion to optimize the performance of supercapacitors on the atomic level. In this work, a novel monolayer Ni-Co hydroxyl carbonate with an average thickness of 1.07 nm is(More)
  • Meiqin Zhao, Yao Li, +7 authors Luísa Margarida Martins
  • 2017
Composite coatings synthesized by different morphologies of CeO2 in supergravity devices are highly active in hydrogen evolution reactions (HERs). By adding CeO2 nanoflakes (CeO2 Nf) or CeO2 nanorods (CeO2 Nr), the change in the microstructures of composites becomes quite distinct. Moreover, most Ni–S alloys are attached on the surface of CeO2 and roughen(More)
Aqueous hybrid capacitors (HCs) suffer from sacrificed power density and long cycle life due to the insufficient electric conductivity and poor chemical stability of the battery-type electrode material. Herein, we report a novel NH4-Co-Ni phosphate with a stable hierarchical structure combining ultrathin nanopieces and single crystal microplatelets in one(More)
  • 1