Meiqing Sun

  • Citations Per Year
Learn More
Cadmium selenide (CdSe) nanoparticles are implemented in a wide range of applications, but their potential risk to the ecosystem, especially to the organisms essential for the maintenance of ecosystem homeostasis, such as fungal populations, plants and bacteria, remains to be elucidated. In this study, we investigated their toxicity to one of the most(More)
A reliable animal model of facial nerve (FN) injury forms the basis for effective scientific studies of injury and repair of the FN. Currently, rodents are the most widely used animal model for such studies, most of which adopt a postauricular incision approach. However, it is difficult to carry out the procedure on perinatal rodents owing to(More)
Mesoporous wall-structured TiO2 on reduced graphene oxide (RGO) nanosheets were successfully fabricated through a simple hydrothermal process without any surfactants and annealed at 400 °C for 2 h under argon. The obtained mesoporous structured TiO2 -RGO composites had a high surface area (99 0307 m(2)  g(-1)) and exhibited excellent electrochemical cycling(More)
Although there have been numerous studies on bacterial toxicity, the cytotoxicity of nanoparticles toward fungi remains poorly understood. We investigated the toxicity of various sizes of lead sulfide particles against the important model fungus, Saccharomyces cerevisiae. The smallest particle exerted the highest toxicity, inhibiting cell growth and(More)
Cadmium sulfide (CdS) nanomaterials (such as CdS nanodots or nanorods) are widely used in optical, electronic, and biological applications. Large-scale production and use of these materials will likely result in accidental and incidental releases, which raise concerns about their potential environmental and human-health impacts. Most studies on toxicity of(More)
Responsible development of nanotechnology calls for improved understanding of how nanomaterial surface energy and reactivity affect potential toxicity. Here, we challenge the paradigm that cytotoxicity increases with nanoparticle reactivity. Higher-surface-energy {001}-faceted CdS nanorods (CdS-H) were less toxic to Saccharomyces cerevisiae than(More)
  • 1