Meinard Müller

Learn More
The reuse of human motion capture data to create new, realistic motions by applying morphing and blending techniques has become an important issue in computer animation. This requires the identification and extraction of logically related motions scattered within some data set. Such content-based retrieval of motion capture data, which is the topic of this(More)
In this paper, we describe an efficient method for audio matching which performs effectively for a wide range of classical music. The basic goal of audio matching can be described as follows: consider an audio database containing several CD recordings for one and the same piece of music interpreted by various musicians. Then, given a short query audio clip(More)
Given a large audio database of music recordings, the goal of classical audio identification is to identify a particular audio recording by means of a short audio fragment. Even though recent identification algorithms show a significant degree of robustness towards noise, MP3 compression artifacts, and uniform temporal distortions, the notion of similarity(More)
In recent years, depth cameras have become a widely available sensor type that captures depth images at real-time frame rates. Even though recent approaches have shown that 3D pose estimation from monocular 2.5D depth images has become feasible, there are still challenging problems due to strong noise in the depth data and self-occlusions in the motions(More)
Chroma-based audio features, which closely correlate to the aspect of harmony, are a well-established tool in processing and analyzing music data. There are many ways of computing and enhancing chroma features, which results in a large number of chroma variants with different properties. In this paper, we present a chroma toolbox [13], which contains MATLAB(More)
Music signal processing may appear to be the junior relation of the large and mature field of speech signal processing, not least because many techniques and representations originally developed for speech have been applied to music, often with good results. However, music signals possess specific acoustic and structural characteristics that distinguish(More)
Locating boundaries between coherent and/or repetitive segments of a time series is a challenging problem pervading many scientific domains. In this paper we propose an unsupervised method for boundary detection, combining three basic principles: novelty, homogeneity, and repetition. In particular, the method uses what we call structure features, a(More)
Humans tend to organize perceived information into hierarchies and structures, a principle that also applies to music. Even musically untrained listeners unconsciously analyze and segment music with regard to various musical aspects, for example, identifying recurrent themes or detecting temporal boundaries between contrasting musical parts. This paper(More)