Learn More
Transgenic animals have been used for years to study gene function, produce important proteins, and generate models for the study of human diseases. However, inheritance and expression instability of the transgene in transgenic animals is a major limitation. Copy number and promoter methylation are known to regulate gene expression, but no report has(More)
Transgenic technology has greatly facilitated our understanding of gene function, producing pharmaceutical proteins, and generating models for the study of human diseases. However, epigenetic silencing is still the most major limitation. In this study, we employed DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine (5-Aza-dC) and histone deacetylase(More)
Genetically modified pigs have become a popular model system in fundamental research, agricultural and biomedical applications. However, random integration often result in unstable expression of transgene and unpredictable phenotypes. The Rosa26 locus has been widely used to produce genetic modified animals with high and consistent expressing of transgene(More)
Spherical Janus particles are one of the most prominent examples for active Brownian objects. Here, we study the diffusiophoretic motion of such microswimmers in experiment and in theory. Three stages are found: simple Brownian motion at short times, superdiffusion at intermediate times, and finally diffusive behavior again at long times. These three(More)
BACKGROUND The cost-effective production of second-generation bioethanol, which is made from lignocellulosic materials, has to face the following two problems: co-fermenting xylose with glucose and enhancing the strain's tolerance to lignocellulosic inhibitors. Based on our previous study, the wild-type diploid Saccharomyces cerevisiae strain BSIF with(More)
To develop a suitable Saccharomyces cerevisiae industrial strain as a chassis cell for ethanol production using lignocellulosic materials, 32 wild-type strains were evaluated for their glucose fermenting ability, their tolerance to the stresses they might encounter in lignocellulosic hydrolysate fermentation and their genetic background for pentose(More)
Mitochondria are the powerhouses of eukaryotic cells and the main source of reactive oxygen species (ROS) in hypoxic cells, participating in regulating redox homeostasis. The mechanism of tumor hypoxia tolerance, especially the role of mitochondria in tumor hypoxia resistance remains largely unknown. This study aimed to explore the role of mitochondria in(More)
Neural stem cells (NSCs) forming neurospheres in a conventional culture tend to develop necrotic/apoptotic centers due to mass transport limitations. In this study, the internal pore structure of calcium-alginate/gelatin (CAG) microbeads was tuned and controlled to provide a suitable three-dimensional environment supporting NSC proliferation. Direct impact(More)
Oxidative stress is known to contribute to insulin resistance in diabetes, however the mechanism is not clear. Here we show that reactive oxygen species (ROS) could reprogram the glucose metabolism through upregulating the pentose pathway so as to induce insulin resistance in type 2 diabetes (T2DM). By using streptozotocin-high fat diet (STZ-HFD) induced(More)
AMPK dysregulation contributes to the onset and development of type 2 diabetes (T2DM). AMPK is known to be activated by reactive oxygen species (ROS) and antioxidant interference. However the mechanism by which redox state mediates such contradictory result remains largely unknown. Here we used streptozotocin-high fat diet (STZ-HFD) induced-type 2 diabetic(More)