Learn More
Transgenic chloroplasts offer unique advantages in plant biotechnology, including high-level foreign protein expression, absence of epigenetic effects, and gene containment due to the lack of transgene transmission through pollen. However, broad application of plastid genome engineering in biotechnology has been largely hampered by both the lack of(More)
Substitutional RNA editing changes single C nucleotides in higher plant chloroplast transcripts into U residues. To determine the cis-acting sequence elements involved in plastid RNA editing, we constructed a series of chloroplast transformation vectors harboring selected editing sites of the tobacco ndhB transcript in a chimeric context. The constructs(More)
RNA editing in higher plant plastids alters mRNA sequences by C-to-U conversions at highly specific sites through an unknown mechanism. To elucidate how the cytidine residues to be edited are specifically recognized and distinguished from other cytidines in close proximity, we have changed in vivo the distances of two plastid RNA-editing sites from their(More)
Transcripts in higher plant cell organelles undergo RNA editing by C-to-U conversion. Both the mechanistic steps and the factors involved in this process are largely unknown. To gain a better understanding of the molecular interactions involved in organellar RNA editing, we have begun to identify critical nucleotide positions for plastid RNA editing-site(More)
NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) is the central regulator of the pathogen defense reaction systemic acquired resistance (SAR). NPR1 acts by sensing the SAR signal molecule salicylic acid (SA) to induce expression of PATHOGENESIS-RELATED (PR) genes. Mechanistically, NPR1 is the core of a transcription complex interacting with TGA(More)
  • 1