Learn More
Src-suppressed C kinase substrate (SSeCKS) plays a role in membrane-cytoskeletal remodeling to regulate mitogenesis, cell differentiation, and motility. Previous study showed that lipopolysaccharide (LPS) induced a selective and strong expression of SSeCKS in the vascular endothelial cells of lung. Here we show that LPS stimulation elevated expression of(More)
Dexamethasone-induced Ras protein 1 (Dexras 1), a brain-enriched member of Ras subfamily of guanosine triphosphatases, as a novel physiologic nitric oxide (NO) effector, anchor neuronal nitric oxide synthase (nNOS) that could form a ternary complex with carboxy-terminal PDZ ligand of nNOS (CAPON) and nNOS, to specific targets to enhance NO signaling. The(More)
Skp2 is frequent amplified and overexpressed in breast cancer, making it a potential molecular target for cancer therapy. The objective of this study was to examine the effect of PPARγ overexpression on Skp2 expression in breast cancer cell lines. First, we investigated the role of PPARγ and Skp2 in human breast cancer progression. Immunohistochemical(More)
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, while the responses of Schwann cells during adhesion and migration are unknown, so we examined the expression changes of SSeCKS and F-actin in Schwann cells after(More)
β1,4-Galactosyltransferase-I (β1,4-GalT-I) is one of the best studied glycosyltransferases. Previous studies demonstrated that β1,4-GalT-I was a major galactosyltransferase responsible for selectin-ligand biosynthesis and that inflammatory responses of β1,4-GalT-I deficient mice were impaired. In this study, we investigate the expression of β1,4-GalT-I in(More)
Glycosylation is one of the most important post-translational modifications. It is clear that the single step of beta-1,4-galactosylation is performed by a family of beta-1, 4-galactosyltransferases (beta-1,4-GalTs), and that each member of this family may play a distinct role in different tissues and cells. beta-1,4-GalT I and V are involved in the(More)
Cell-surface carbohydrate chains are known to contribute to cell migration, interaction, and proliferation. beta-1,4-galactosyltransferase-I (beta-1,4-GalT-I), which is one of the best-studied glycosyltransferases, plays a key role in the synthesis of type 2 chains in N-glycans and the core 2 branch in O-glycans. Recently, it has been reported that skin(More)
beta-1,4-galactosyltransferase I (beta-1,4-GalT I) plays an important role in the synthesis of the backbone structure of adhesion molecules involved in leukocyte-endothelial cell interaction. The expression of beta-1,4-GalT I mRNA increased in primary human endothelial cells after exposure to tumor necrosis factor-alpha (TNF-alpha). In the central nervous(More)
Src-suppressed C kinase substrate (SSeCKS), an in vivo and in vitro protein kinase C substrate, is a major lipopolysaccharide (LPS) response protein which markedly upregulated in several organs, including brain, lung, heart, kidney, etc., indicating a possible role of SSeCKS in inflammatory process. In the central nervous system (CNS), astrocytes play a(More)
Pyrroloquinoline quinone (PQQ) is a water-soluble, anionic, quinonoid substance that has been established as an essential nutrient in animals. Owing to the inherent properties of PQQ as an antioxidant and redox modulator in various systems, PQQ is expected to be used in pharmacological applications in the near future. Although many recent studies have(More)