Learn More
BACKGROUND and objective. Unilateral spatial neglect (USN) can interfere with rehabilitation processes and lead to poor functional outcome. The purpose of this study was to determine whether prism adaptation (PA) therapy improves USN and functional outcomes in stroke patients in the subacute stage. METHODS . A multicenter, double-masked, randomized,(More)
OBJECTIVE Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular(More)
OBJECTIVE To explore the effectiveness of neurorehabilitative training using an electroencephalogram-based brain- computer interface for hand paralysis following stroke. DESIGN A case series study. SUBJECTS Eight outpatients with chronic stroke demonstrating moderate to severe hemiparesis. METHODS Based on analysis of volitionally decreased amplitudes(More)
BACKGROUND The mu event-related desynchronization (ERD) is supposed to reflect motor preparation and appear during motor imagery. The aim of this study is to examine the modulation of ERD with transcranial direct current stimulation (tDCS). METHODS Six healthy subjects were asked to imagine their right hand grasping something after receiving a visual cue.(More)
The sensorimotor cortex activity measured by scalp EEG shows coherence with electromyogram (EMG) activity within the 15- to 35-Hz frequency band (β-band) during weak to moderate intensity of isometric voluntary contraction. This coupling is known to change its frequency band to the 35- to 60-Hz band (γ-band) during strong contraction. This study aimed to(More)
Oscillatory activity of the sensorimotor cortex has been reported to show coherence with muscle activity in the 15- to 35-Hz frequency band (β-band) during weak to moderate intensity of isometric contraction. The present study examined the variance of the magnitude of the corticomuscular coherence across a large number of subjects. We quantified the(More)
There is increasing interest in electroencephalogram (EEG)-based brain-computer interface (BCI) as a tool for rehabilitation of upper limb motor functions in hemiplegic stroke patients. This type of BCI often exploits mu and beta oscillations in EEG recorded over the sensorimotor areas, and their event-related desynchronization (ERD) following motor imagery(More)
OBJECTIVE The purpose of this study was to investigate reliability, validity, internal structure, and responsiveness of our newly developed Trunk Impairment Scale (TIS) for patients with stroke. DESIGN A total of 73 patients with stroke participated in this prospective study. Interrater reliability (weighted kappa statistics), content validity (principal(More)
BACKGROUND To more accurately evaluate rehabilitation outcomes in stroke patients, movement irregularities should be quantified. Previous work in stroke patients has revealed a reduction in the trajectory smoothness and segmentation of continuous movements. Clinically, the Stroke Impairment Assessment Set (SIAS) evaluates the clumsiness of arm movements(More)
Electroencephalogram-based brain–computer interface (BCI) has been developed as a new neurorehabilitative tool for patients with severe hemiparesis. However, its application has been limited because of difficulty detecting stable brain signals from the affected hemisphere. It has been reported that transcranial direct current stimulation (tDCS) can modulate(More)