Tetsuya Tsuji16
Kimitaka Hase15
16Tetsuya Tsuji
15Kimitaka Hase
Learn More
OBJECTIVE To explore the effectiveness of neurorehabilitative training using an electroencephalogram-based brain- computer interface for hand paralysis following stroke. DESIGN A case series study. SUBJECTS Eight outpatients with chronic stroke demonstrating moderate to severe hemiparesis. METHODS Based on analysis of volitionally decreased amplitudes(More)
There is increasing interest in electroencephalogram (EEG)-based brain-computer interface (BCI) as a tool for rehabilitation of upper limb motor functions in hemiplegic stroke patients. This type of BCI often exploits mu and beta oscillations in EEG recorded over the sensorimotor areas, and their event-related desynchronization (ERD) following motor imagery(More)
BACKGROUND The mu event-related desynchronization (ERD) is supposed to reflect motor preparation and appear during motor imagery. The aim of this study is to examine the modulation of ERD with transcranial direct current stimulation (tDCS). METHODS Six healthy subjects were asked to imagine their right hand grasping something after receiving a visual cue.(More)
OBJECTIVE Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular(More)
OBJECTIVE The purpose of this study was to investigate reliability, validity, internal structure, and responsiveness of our newly developed Trunk Impairment Scale (TIS) for patients with stroke. DESIGN A total of 73 patients with stroke participated in this prospective study. Interrater reliability (weighted kappa statistics), content validity (principal(More)
Because recovery of upper extremity (UE) function to a practical level has been difficult in many stroke patients, compensatory approaches have been emphasized. Based on researches indicating greater potential for brain plasticity, newer approaches targeting at functional restoration have been attempted. However, no intervention has been shown to be(More)
It is known that weak transcranial direct current stimulation (tDCS) induces persistent excitability changes in the cerebral cortex. There are, however, few studies that compare the after-effects of anodal versus cathodal tDCS in patients with stroke. This study assessed the after-effects of tDCS over the motor cortex in patients with hemiparetic stroke and(More)
Previous simulation and experimental studies have demonstrated that the application of Variational Bayesian Multimodal EncephaloGraphy (VBMEG) to magnetoencephalography (MEG) data can be used to estimate cortical currents with high spatio-temporal resolution, by incorporating functional magnetic resonance imaging (fMRI) activity as a hierarchical prior.(More)
Electroencephalogram-based brain–computer interface (BCI) has been developed as a new neurorehabilitative tool for patients with severe hemiparesis. However, its application has been limited because of difficulty detecting stable brain signals from the affected hemisphere. It has been reported that transcranial direct current stimulation (tDCS) can modulate(More)
BACKGROUND For severely paralyzed people, a brain-computer interface (BCI) provides a way of re-establishing communication. Although subjects with muscular dystrophy (MD) appear to be potential BCI users, the actual long-term effects of BCI use on brain activities in MD subjects have yet to be clarified. To investigate these effects, we followed BCI use by(More)