Mei-ying Zhuo

Learn More
To study the physiological and molecular mechanisms of age-related memory loss, we assessed spatial memory in C57BL/B6 mice from different age cohorts and then measured in vitro the late phase of hippocampal long-term potentiation (L-LTP). Most young mice acquired the spatial task, whereas only a minority of aged mice did. Aged mice not only made(More)
Several lines of evidence suggest that cyclic GMP might be involved in long-term potentiation (LTP) in the hippocampus. Arachidonic acid, nitric oxide and carbon monoxide, three molecules that have been proposed to act as retrograde messengers in LTP, all activate soluble guanylyl cyclase. We report here that an inhibitor of guanylyl cyclase blocks the(More)
The gene encoding tissue-type plasminogen activator (t-PA) is an immediate response gene, downstream from CREB-1 and other constitutively expressed transcription factors, which is induced in the hippocampus during the late phase of long-term potentiation (L-LTP). Mice in which the t-PA gene has been ablated (t-PA-/-) showed no gross anatomical,(More)
Nitric oxide (NO) and carbon monoxide (CO) may act as retrograde messages for long-term potentiation (LTP) in the hippocampus. Zinc protoporphyrin IX, an inhibitor of the enzyme that produces CO, blocked induction of LTP in the CA1 region of hippocampal slices. Application of either NO or CO to slices produced a rapid and long-lasting increase in the size(More)
The cAMP-dependent protein kinase (PKA) has been shown to play an important role in long-term potentiation (LTP) in the hippocampus, but little is known about the function of PKA in long-term depression (LTD). We have combined pharmacologic and genetic approaches to demonstrate that PKA activity is required for both homosynaptic LTD and depotentiation and(More)
Previous results have suggested that cGMP is involved in hippocampal long-term potentiation (LTP), perhaps as the presynaptic effector of a retrograde messenger. However, other studies have failed to replicate some of those results, making the role of cGMP uncertain. We therefore reexamined this question and identified several variables that can affect the(More)
Pharmacological studies have suggested that long-term potentiation (LTP) and long-term depression (LTD) and depotentiation, three forms of synaptic plasticity in the hippocampus, require the activity of the phosphatase calcineurin. At least two different isoforms of calcineurin are found in the central nervous system. To investigate whether all of these(More)
Neural pathways within the hippocampus undergo use-dependent changes in synaptic efficacy, and these changes are mediated by a number of signaling mechanisms, including cAMP-dependent protein kinase (PKA). The PKA holoenzyme is composed of regulatory and catalytic (C) subunits, both of which exist as multiple isoforms. There are two C subunit genes in mice,(More)
Nitric oxide (NO) has been suggested to play the role of retrograde messenger during long-term potentiation (LTP) in hippocampus. In support of this idea, NO induces LTP when paired with a weak tetanus (50 Hz). An additional criterion that has been proposed for NO being a retrograde messenger is that it should also elicit long-lasting enhancement when(More)
We have been investigating the hypothesis that the membrane-permeant molecules nitric oxide (NO) and carbon monoxide (CO) may act as retrograde messengers during long-term potentiation (LTP). Inhibitors of either NO synthase or heme oxygenase, the enzyme that produces CO, blocked induction of LTP in the CA1 region of hippocampal slices. Brief application of(More)