Mehrnoosh Shirangi

  • Citations Per Year
Learn More
Polyesters with hydrophilic domains, i.e., poly(d,l-lactic-co-glycolic-co-hydroxymethyl glycolic acid) (PLGHMGA) and a multiblock copolymer of poly(ε-caprolactone)-PEG-poly(ε-caprolactone) and poly(l-lactide) ((PC-PEG-PC)-(PL)) are expected to cause less acylation of encapsulated peptides than fully hydrophobic matrices. Our purpose is to assess the extent(More)
Free radical polymerization is often used to prepare protein and peptide-loaded hydrogels for the design of controlled release systems and molecular imprinting materials. Peroxodisulfates (ammonium peroxodisulfates (APS) or potassium peroxodisulfates (KPS)) with N,N,N,N-tetramethylethylenediamine (TEMED) are frequently used as initiator and catalyst.(More)
Acylation of biopharmaceuticals such as peptides has been identified as a major obstacle for the successful development of PLGA controlled release formulations. The purpose of this study was to develop a method to inhibit peptide acylation in poly(d,l-lactide-co-glycolide) (PLGA) formulations by reversibly and temporarily blocking the amine groups of a(More)
Acylation of peptides is a well-known but unwanted phenomenon in polyester matrices such as poly(d,l-lactic-co-glycolic acid) (PLGA) microspheres used as controlled release formulations. Acylation normally occurs on lysine residues and the N-terminus of the peptide. The purpose of the present work was to assess other possible acylation sites on peptides.(More)
  • 1